Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drugs And Explosives: End-To-End Inspection

27.03.2008
Specialists from the Institute of Solid State Physics, Russian Academy of Sciences (town of Chernogolovka, Moscow Region), together with their colleagues from Joined Institute for Nuclear Research and the ASPECT Close Joint-Stock Company – Research and Production Center (town of Dubna, Moscow Region) are developing antiterrorist transmission device for express detection of explosives, toxic and narcotic substances.

The future device operation is based on object translucence by a fast neutron flux and on subsequent recording of spectra of roentgen fluorescence induced by neutrons. Certainly, this is not the safest method for dangerous substances detection – people should be at the twenty to thirty meter distance during the inspection. But, on the other hand, the method is very efficient – nothing can be hidden from such control.

It takes only five minutes to get complete information about the object – its 3D image, including all articles hidden inside the object and their chemical composition. So, one can quickly detect what is hidden inside a truck or a carriage, for example, where heroin or trinitrotoluene is concealed, and where there are simply sugar bags without any dangerous ‘enclosure’.

The device under design has several peculiarities, two of which are most important. One of them is the original neutron scanner construction of a new type based on thin-walled sapphire tubes, and the second is the original construction of X-radiation detectors that are made in the form of 3D matrices of reciprocally intersecting scintillation fibers. These peculiarities enable to perform the inspection quicker, more conveniently and precisely than similar-purpose devices existing so far. Besides, the device dimensions and its power consumption will also decrease significantly.

The device will operate approximately as follows. In the neutron scanner, the flux of deuterons (accelerated in a specially grown sapphire tube) hits the tritium target set at the tube butt-end. At that, each reaction (one hit) forms a fast neutron and an alpha particle (helium nucleus) flying directly in the opposite direction. It is difficult to directly characterize these neutrons (to measure the direction, velocity and energy of each neutron), but it is easy to do than indirectly – with the help of alpha particles paired to them. If a fast neutron flies through the tube walls and further through the object, alpha particles are held back by a thin film of a substance that glows upon interaction with an alpha particle. As a result, it can be determined how many neutrons were formed and in what direction and at what time they ‘flew out’. This is the first step – to detemine characteristics of scanning irradiation.

When a fast neutron collides with an atom, it ‘induces’ the atom for a short while. Coming back to the initial condition, the induced atom nucleus generates (emits) a gamma-quantum with certain energy, this energy being the value typical of atoms of each element. Consequently, recording of such secondary gamma-quantums can determine what elements the object under investigation is made of. Certainly, the ‘gross’ analysis is of no interest – a 3D image is needed to detect where materials of the target composition are located. The detector based on multiple piled thin scintillation fibers (a row is placed lengthwise, another row is placed across like a pile of logs, thus making ten rows altogether) enables to record the source of specified gamma radiation with precise indication to disposition of its thin scintillation fibers, which researchers from the Institute of Solid State Physics (Russian Academy of Sciences) have learnt to grow from melt.

As a result, knowing parameters of the ‘hitting’ neutron flux and precise characteristics of each of neutrons, as well as parameters of induced gamma radiation, one can in principle reveal the genuine contents of the object (of course with the help of a PC and proper software) and to find dangerous articles where no other devices or specially trained keen-nosed dog can detect it. “To be more precise, adds one of the authors, Nikolai Klassen, Ph. D. (Physics&Mathematics), devices based on fast neutrons do exist in principle. But our device is more compact (therefore, it can be produced in a portable version, which is very important for antiterrorist and drug controlling that becomes possible in any location where a suspicious automobile is stopped) and it provides information quicker, to a fuller extent and in a less expensive way.”

In fact, the device per se does not exist yet. Its design has been developed, individual elements are ready, developed and tested. However, some components of the future device exist only ‘on paper’ for the time being – the researchers know how to produce them but the implementation requires funding. Since the work is extremely important not only for scientists but for everybody in general, the funds will hopefully be raised.

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>