Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research dives into details of supernova

25.03.2008
Astronomers have made the best determination of the power of a supernova explosion long after it was visible from Earth. This technique, using X-ray and optical observations, may help reveal the details of how some stars come to a cataclysmic death.

Using data from NASA’s Chandra X-ray Observatory, the Gemini Observatory and ESA’s XMM-Newton Observatory, two teams of international researchers, including Lawrence Livermore National Laboratory scientists Kem Cook and Sergei Nikolaev, determined that a supernova that occurred about 400 years ago was unusually bright and energetic.

By observing the remnant of a supernova and a light echo from the initial explosion, the teams have established the validity of a new method for studying a type of supernova that produces most of the iron in the universe. The two teams of researchers studied the supernova remnant and the supernova light echo that are located in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light years from Earth

This is the first time two methods – X-ray observations of the supernova remnant and optical observations of the expanding light echoes – have been combined to study a supernova. Until now, scientists could only estimate the power of explosions from the light seen soon after a star exploded, or from remnants that are several hundred years old, but not from both.

And the results could have implications in identifying similar incidents in the Milky Way.

“Classifying outbursts associated with centuries-old remnants is likely to be successful in providing new constraints on additional LMC supernovae as well as their historical counterparts in our own galaxy,” Cook said.

In 2004, scientists used Chandra to determine that a supernova remnant, known as SNR 0509-67.5 in the LMC, was a Type Ia supernova, which is caused by a white dwarf star in a binary system that reaches a critical mass and explodes.

In the new optical study, an estimate of the explosion’s power came from studying the original light of the explosion as it travels through space. Just as sound bounces off walls of a canyon, light waves create an echo by bouncing off dust clouds in space. The light from these echoes travels a longer path than the light that travels straight toward us, and so can be seen hundreds of years after the original explosion.

"People didn’t have advanced telescopes to study supernovas when they went off hundreds of years ago," said Armin Rest of Harvard University, who led the light echo observations. "But we’ve done the next best thing by looking around the site of the explosion and constructing an action replay of it."

First seen by the Cerro-Tololo Inter-American Observatory in Chile, the light echoes were observed in greater detail by Gemini Observatory in Chile. The optical spectra of the light echo were used to confirm the supernova was a Type Ia and to unambiguously determine the particular class of explosion and its energy.

The Chandra and XMM data were then independently used to calculate the amount of energy involved in the original explosion, using analysis of the supernova remnant and state-of-the-art explosion models. The conclusion was that the explosion was an especially energetic and bright variety of Type Ia supernova, providing strong evidence that the detailed explosion models are accurate.

Cook and Nikolaev are active members of the SuperMACHO project, a five-year microlensing survey of the LMC. The light echo research evolved out of the serendipitous discovery of light echos in SuperMACHO.

Both methods estimated a similar time since the explosion of about 400 years. An extra constraint on the age comes from the lack of recorded historical evidence for a recent supernova in the LMC. Because this star appears in the Southern Hemisphere, it likely would have been seen by navigators who noted similarly bright celestial events, if it had occurred less than about 400 years ago.

Because a Type Ia supernova brightness can be determined from its spectrum or the way its apparent brightness fades, Type Ia supernovae are important tools to study the expansion of the universe and the nature of dark energy.

“This is the first time that spectra were obtained of an ancient supernova, and they were good enough to allow us to identify the supernova as belonging to a particularly bright class of type Ia supernovae,” Cook said.

This work also is being extended to other supernova remnants and light echoes.

These results appear in two recently accepted papers in The Astrophysical Journal. The first discusses the spectrum obtained by Gemini, led by Rest. The second, with Carlos Badenes of Princeton as first author, details the Chandra observations of SNR 0509-67.5.

Other institutions involved in the research include Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Harvard-Smithsonian Center for Astrophysics, Gemini Observatory, McMaster University, Texas A&M University, Ohio State University, Washington University, University of Washington, Las Campanas Observatory, Pontificia Universidad Católica de Chile, Universidad de Chile and UC Berkeley.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://publicaffairs.llnl.gov/news/news_releases/2008/NR-08-03-06.html

More articles from Physics and Astronomy:

nachricht Journey to the center of Mars
20.02.2020 | Tohoku University

nachricht Laser writing enables practical flat optics and data storage in glass
20.02.2020 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>