Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steps towards warship invisibility

29.02.2008
Naval warships might look like all-powerful vessels but they are also highly vulnerable to being spotted by the enemy.

That fear of being detected has led the military to develop new stealth technologies that allow ships to be virtually invisible to the human eye, to dodge roaming radars, put heat-seeking missiles off the scent, disguise their own sound vibrations and even reduce the way they distort the Earth’s magnetic field, as senior lecture in remote sensing and sensors technology at Britannia Royal Navy College, Chris Lavers, explains in March’s Physics World.

Wars throughout the twentieth century prompted advances in stealth technologies. Some of the earliest but most significant strides towards invisibility involved covering ships with flamboyant cubist patterns – a technique known as “dazzle painting”. During the Second World War, the US military even worked out a way of using lights to make the brightness of a ship match that of the background sea.

When British physicist Robert Watson Watt was charged with designing a ‘death ray’ to destroy entire towns and cities during the Second World War, he calculated it impossible. He did conclude however that radio waves could be used to detect ships and aircrafts too far way to be seen by the naked eye.

Radar was born. For ships to dodge radar, both a ship’s geometry and a ship’s coating have to be considered. Radars are particularly receptive to right angles, which is why modern battleships are often peculiarly shaped. Special paint and foam-coating have also been used to cover ships, which convert radio-waves into heat and stop radio waves being reflected, rendering the signals useless.

The “stealthiest” ship that currently exists is Sweden’s Visby Corvette. Apart from being painted in grey dazzle camouflage and made of low-radar reflectivity materials, it also does not use propellers, which are the noisiest part of a ship. The vessel also has the lowest “magnetic signature” of any current warship.

But the next generation of warships could be truly invisible by exploiting “metamaterials” – artificially engineered structures first dreamt up by physicist John Pendry at Imperial College, London. Metamaterials are tailored to have specific electromagnetic properties not found in nature. In particular, they can bend light around an object, making it appear to an observer as though the waves have passed through empty space.

About the research, Chris Lavers writes, “If optical and radar metamaterials could be developed, they might provide a way to make a ship invisible to both human observers and radar systems, although the challenges of building a cloak big enough to hide an entire ship are huge.”

Also in this issue:

•Full steam ahead – an interview with next CERN boss Rolf-Dieter Heuer about the challenges when the Large Hadron Collider opens later this year

•Microelectronics based on the flow of heat – the new and exciting field of ‘phononics’

Charlie Wallace | alfa
Further information:
http://www.physicsworld.com/

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>