Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers discover scaled-down Jupiter and Saturn in a faraway solar system like our own

15.02.2008
An international team of astronomers has discovered two planets that resemble smaller versions of Jupiter and Saturn in a solar system nearly 5,000 light years away.

The find suggests that our galaxy hosts many planetary systems like our own, said Scott Gaudi, assistant professor of astronomy at Ohio State University.

He and his colleagues reported their results in the February 15 issue of the journal Science.

The two planets were revealed when the star they orbit crossed in front of a more distant star as seen from Earth. For a two-week period from late March through early April of 2006, the nearer star magnified the light shining from the farther star.

The phenomenon is called gravitational microlensing, and this was a particularly dramatic example: the light from the more distant star was magnified 500 times.

The Optical Gravitational Lensing Experiment (OGLE) first detected the event, dubbed OGLE-2006-BLG-109, on March 28, 2006. The Microlensing Follow Up Network (MicroFUN), led by Andrew Gould, professor of astronomy at Ohio State, then joined with OGLE to organize astronomers worldwide to gather observations of it. Andrzej Udalski, professor of astronomy at Warsaw University Observatory, is the leader of OGLE.

Gaudi took the lead in analyzing the data as they came in. As he studied the light signal, he saw a distortion that he thought was caused by a Saturn-mass planet. Then, less than a day later, came an additional distortion he wasn't expecting: a "blip" in the signal that appeared to be caused by a second, larger planet orbiting the same star.

Over the next few months, Gaudi demonstrated that this two-planet interpretation was correct. Then David Bennett, a research associate professor of astrophysics and cosmology at the University of Notre Dame, refined Gaudi's preliminary model using sophisticated software, and revealed additional details about the system.

This is the third time a Jupiter-mass planet was found by microlensing, Gaudi explained. In the previous two cases, additional planets would have been very difficult to detect, had they been there.

"This is the first time we had a high-enough magnification event where we had significant sensitivity to a second planet -- and we found one." Gaudi said. "You could call it luck, but I think it might just mean that these systems are common throughout our galaxy."

Astronomers have found two planets at once before, “but using other techniques that don’t pick up on solar systems like ours,” he said.

The newly-discovered planets appear to be gaseous planets like Jupiter and Saturn -- only about 80 percent as big -- and they orbit a star about half the size of the sun. The star is dim and cold compared to ours, issuing only five percent as much light.

Still, the new solar system appears to be a smaller analog of our own. The larger planet is about as massive compared to its star as Jupiter is to ours. The smaller planet shares a similar mass ratio with Saturn.

Also, the smaller planet is roughly twice as far from its star as the larger one, just as Saturn is roughly twice as far away from the sun as Jupiter. Although the star is much dimmer than our sun, temperatures at both planets are likely to be similar to that of Jupiter and Saturn, because they are closer to their star.

“The temperatures are important because these dictate the amount of material that is available for planet formation,” Gaudi said. “Most theorists think that the biggest planet in our solar system formed at Jupiter's location because that is the closest to the sun that ice can form. Saturn is the next biggest because it is in the next location further away, where there is less primordial material available to form planets.”

“Theorists have wondered whether gas giants in other solar systems would form in the same way as ours did. This system seems to answer in the affirmative.”

The fact that astronomers found the planets during the first event that allowed such a detection suggests that these scaled-down versions of our solar system are very common, he added.

Previously, astronomers had found four planets using microlensing; two of those were found by the Ohio State University-based MicroFUN group. The latest two planets make six, and he expects that number to double over the next year as other teams publish new findings.

"We're just getting better at what we do," Gaudi said. "We've hit our stride with this technique."

He has also calculated that the next generation of microlensing experiments -- using telescopes on the ground and in space -- will likely be able to detect analogs to all of our solar system’s planets, except for the tiniest one, Mercury.

The current discovery relied on 11 different ground-based telescopes in countries around the world, including New Zealand, Tasmania, Israel, Chile, the Canary Islands, and the United States.

Both professional and amateur skywatchers joined in. People from three other microlensing collaborations -- the Microlensing Observations in Astrophysics (MOA) Collaboration, the Probing Lensing Anomalies NETwork (PLANET), and the RoboNet Collaboration -- all contributed observations and are co-authors of the study with MicroFUN and OGLE.

Gaudi described this microlensing event as the most complicated one ever studied. The astronomers carefully modeled their data on computers, and explored all possible explanations for the light signal. A year and a half later, they were confident that they’d found two planets. In part, their confidence came from additional observations from the W.M. Keck Observatory in Hawaii, which they used to calculate the mass of the star.

Scott Gaudi | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>