Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First pictures of the moon

03.07.2009
Münster planetologists celebrate "LRO" mission

Yesterday (2 July 2009) the Lunar Reconnaissance Orbiter (LRO) - the American mission which left Cape Canaveral on 18 June 2009 with the aim of preparing a manned return to the moon - transmitted the first pictures back to Earth.


First pictures from mare nubium
NASA

For Prof. Harald Hiesinger from the Institute of Planetology at Münster University this is a tremendous success. "I've never seen the moon like this before," he says, "it's absolutely fantastic!" Hiesinger's is one of six experiments on board the LRO.

The new pictures were taken close to the so-called 'terminator', i.e. the dividing line between the dark and the light sides of the moon. The extremely low-lying sun emphasises the morphology of the surface through the long shadows cast. After six years of preparation Hiesinger is now delighted at these first pictures.

"The new high-resolution pictures show in unprecedented detail the moon's surface in the highlands south of the Mare Nubium, one of the dark volcanic surfaces on the south-west front side of the moon," he says. On board there are several cameras, including one with a wide-angle lens and two equipped with tele-zooms. The high-resolution NAC camera maps the surface with around 50 centimetres per pixel, the WAC with around 100 metres per pixel.

"The hard work of the past few years is finally paying off," says Hiesinger. "We can now see the smallest craters and the finest geological structures in these pictures, which we shall be evaluating in detail in the next few years. There'll be a lot to do - for students, too." Hiesinger wants to let students work directly on the data. "For many of my students and staff this presents a unique opportunity to work directly on a mission that's underway. It means they're all highly motivated," says Hiesinger, who was the only German to be selected by NASA right at the beginning of the mission.

Among other things, the team in Münster will be using the pictures to map the moon's surface precisely and determine its age. In doing so, the Münster scientists will be using a method which was already developed in the Apollo era and has been continually refined ever since. As a surface collects more and more craters, the longer it is exposed to bombardment by meteorites, the age of the surface can be determined by counting the craters. The first pictures released by NASA today do indeed show a large number of craters of varying sizes, which Hiesinger and his team will now immediately start counting.

"But we shall of course be looking very closely at the polar areas too." he says, "These are especially interesting because it is suspected that there might be water in the deep craters in the polar regions." As no ray of sunlight is likely to penetrate into these craters it is very cold there, so that water is able to freeze and remain stable for a long time there. "Water on the moon is of course an enormously valuable resource for all future astronauts. This water can be drunk or used as rocket fuel," Hiesinger explains.

Another exciting question is the selection of safe landing spots for future manned missions. The Münster planetologists will be directly involved in looking for the best landing places. "Today's pictures are just the first appetizers," says Hiesinger. "Over the coming year we will be getting many terabytes of first-class, spectacular pictures." And as the Lunar Reconnaissance Orbiter used less fuel on its way to the moon than was planned, the mission will be able to orbit the moon for an estimated five years.

Brigitte Nussbaum | idw
Further information:
http://www.nasa.gov/mission_pages/LRO/main/index.html
http://www.uni-muenster.de/Planetology/en/homepage/homepage.html

Further reports about: LRO Lunar Reconnaissance Orbiter NASA Orbiter Reconnaissance lunar base polar region

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>