Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists offer new theory for iron compounds

16.03.2009
Theory makes predictions about latest high-temp superconductor

An international team of physicists from the United States and China this week offered a new theory to both explain and predict the complex quantum behavior of a new class of high-temperature superconductors.

The findings, which are available online this week from the Proceedings of the National Academy of Sciences, are about materials known as iron pnictides (pronounced NIK-tides). The discovery of high-temperature superconductivity in pnictides a year ago is a boon for physicists who have struggled for more than two decades to explain the phenomena based on observations from a class of copper-based superconductors called cuprates (pronounced COO-prayts).

"Our research addresses the quantum magnetic fluctuations that have been observed in iron pnictides and offers a theory to explain how electron-electron interactions govern this behavior," said study co-author Qimiao Si, a physicist from Rice University. "The origins of superconductivity are believed to be rooted in these effects, so understanding them is extremely important."

In the PNAS paper, Si and collaborators from Rutgers University, Zhejiang University and the Los Alamos National Laboratory explain some of the similarities and differences between cuprates and pnictides. Under certain circumstances, the atomic arrangements in both materials cause electrons to behave collectively, marching in lock step with one another. Experimental physicists study how changes in temperature, magnetic fields and the like cause the coordinated effects to change. They also look for changes arising from differences in the way the compounds are prepared, such as when other substances are added via a technique called "doping."

"In cuprates, the parent compounds are not metallic, and they only become superconducting when they are doped," said Rutgers University physicist and co-author Elihu Abrahams. "In contrast, the parent compounds of pnictides are metallic, but like the undoped cuprates they exhibit a quantum magnetic property called antiferromagnetism."

Based on what's known about electron-electron interactions and about antiferromagnetism in other metals, the authors created a theoretical framework to explain the behavior of the pnictides, offering some specific predictions about how they will behave as they change phases.

Matter is commonly transformed when it changes phases; the melting of ice, for example, marks water's change from a solid phase to a liquid phase. In materials like cuprates and pnictides, the tendency of electrons to act in concert can lead to "quantum" phase changes, shifts from one phase to another that arise entirely from the movements of subatomic particles. The study of quantum "critical points," the tipping points that mark these phase changes, is known as "quantum criticality."

"Our work opens up the iron pnictides as a new setting to study the rich complexities of quantum criticality," said Si. "This is much needed since quantum critical points, which are believed to be important for a wide range of quantum materials, have so far been observed in only a small number of materials."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>