Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists at Mainz University construct prototype for new component of the ATLAS detector

16.11.2016

Mainz-based working group constructed a prototype detector for the Small Wheel of the ATLAS muon spectrometer / Results of initial tests on the ATLAS detector are highly promising

One of the largest projects being undertaken at the CERN research center near Geneva – the ATLAS Experiment – is about to be upgraded. ATLAS played a crucial role in the discovery of the Higgs boson in 2012. With a length of 46 meters and a diameter of 25 meters the ATLAS detector is thus the largest device of its kind being used at a particle accelerator.


Graphical simulation of a particle collision recorded by the prototype detector of the ATLAS Experiment

photo/©: ATLAS Collaboration


Tai-Hua Lin (r.) and Andreas Düdder (l.), both doctoral candidates at Mainz University, installing the prototype detector in the ATLAS system

photo/©: private

It is planned to upgrade the ATLAS detector from late 2018 onwards. Researchers at Johannes Gutenberg University Mainz (JGU) and CERN have developed an initial prototype for this endeavor, which has now been installed at the ATLAS detector. Here it is recording particle collisions from the Large Hadron Collider (LHC).

"Our prototype represents a blueprint for the future particle detectors to be produced throughout the world for installation in ATLAS in 2019/2020," explained Professor Matthias Schott, who was appointed to a Lichtenberg professorship in Experimental Particle Physics at JGU in 2013. He and his work group have been collaborating with their colleagues at CERN for several years on the development of this groundbreaking prototype.

The ATLAS Experiment is one of the four major particle detectors at the LHC. It was specifically designed to study the fundamental components of matter and to learn more about the Higgs boson. The muon spectrometer of the ATLAS detector plays a central role here as it detects and measures muons that can be created by the decay of the Higgs boson. The muon detectors are mounted in three layers on both external sides of the cylinder-like ATLAS detector.

The innermost layer, known as the Small Wheel, is to be replaced by innovative microstructure gas detectors as part of the upgrade project. These so-called Micromegas detectors employ a technology that was developed recently and has not yet been used in such large-scale projects. "The several layers of the New Small Wheels with their 10 meter in diameter will provide an active detector surface area of 2500 square meters and will thus be able to cover a wide range of the whole muon spectrum," added Schott.

Professor Matthias Schott and his team first tested the prototype detector in the Mainz Microtron MAMI, a particle accelerator located on the JGU campus, before installing it at the muon spectrometer of the ATLAS experiment. The tests have been on-going for several weeks and to date everything seems to be going to plan. "We have reached a milestone and the results of our initial tests are really very promising," Schott concluded.

The Mainz-based physicists are already confident that it will be possible to successfully complete the major upgrade project in 2018 based on this masterpiece of technology. Those working on the New Small Wheel (NSW) will be the universities in Freiburg, Munich, Würzburg, and Mainz, partner institutes in France, Greece, Italy, and Russia as well as researchers at CERN. In the coming years, Professor Matthias Schott and his team will be able to rely on major support from the detector laboratory of the Cluster of Excellence 'Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) at Mainz University.

Several million euros are to be invested in the project as a whole. The upgrade work is planned to be completed by 2021 so that ATLAS will then be able to record even more data than ever before from more frequent particle collisions, thus providing new insights into the fundamental building blocks of matter.

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_etap_atlas_prototyp_detektor_01....
Graphical simulation of a particle collision recorded by the prototype detector of the ATLAS Experiment
photo/©: ATLAS Collaboration

http://www.uni-mainz.de/bilder_presse/08_physik_etap_atlas_prototyp_detektor_02....
Tai-Hua Lin (r.) and Andreas Düdder (l.), both doctoral candidates at Mainz University, installing the prototype detector in the ATLAS system
photo/©: private

Further information:
Professor Dr. Matthias Schott
Experimental Particle and Astroparticle Physics (ETAP)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25985
e-mail: mschott@cern.ch
http://www.lichtenberg.physik.uni-mainz.de/

Related links:
http://www.gfk.uni-mainz.de/eng/746.php
http://atlas.cern/

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht It’s closeness that counts: how proximity affects the resistance of graphene
28.01.2020 | Georg-August-Universität Göttingen

nachricht Quantum physics: On the way to quantum networks
27.01.2020 | Ludwig-Maximilians-Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

Unique centromere type discovered in the European dodder

28.01.2020 | Life Sciences

It’s closeness that counts: how proximity affects the resistance of graphene

28.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>