Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen is not definitive evidence of life on habitable extrasolar planets

10.09.2015

The Earth's atmosphere contains oxygen because plants continuously produce it through photosynthesis. This abundant supply of oxygen allows life forms like animals to flourish. Therefore, oxygen had been thought to be an essential biomarker for life on extrasolar planets.

But now, a research assistant professor Norio Narita of the Astrobiology Center of National Institutes of Natural Sciences (NINS), which was founded in April 2015, and an associate professor Shigeyuki Masaoka, of the Institute of Molecular Science of NINS, have presented a novel hypothesis that it could be possible for planets to have large quantities of abiotic (non-biologically produced) oxygen.


Abiotic oxygen can be produced from water in the presence of titanium oxide and an electron acceptor under UV light. Our report suggests that this photocatalytic reaction can supply significant amount of abiotic oxygen on habitable extrasolar planets.

Credit: National Institutes of Natural Sciences (NINS)

This study is a good example of interdisciplinary studies that combine knowledge from different fields of science to promote astrobiology in the search for life on extrasolar planets. The study is published in Scientific Reports on Sep 10, 2015.

Until now, it had been thought that if a planet has oxygen, that must mean that some form of plants are producing it through photosynthesis. Therefore, it had been assumed that when searching for signs of life on habitable extrasolar planets, the presence of oxygen in the atmosphere could be considered a definitive biomarker.

However, non-biological chemical reactions can also affect atmospheric compositions of extrasolar planets. Now, the research team led by Dr. Narita has shown that, abiotic oxygen produced by the photocatalytic reaction of titanium oxide, which is known to be abundant on the surfaces of terrestrial planets, meteorolites, and the Moon in the Solar System, cannot be discounted.

For a planet with an environment similar to the Sun-Earth system, continuous photocatalytic reaction of titanium oxide on about 0.05 % of the planetary surface could produce the amount of oxygen found in the current Earth's atmosphere. In addition, the team estimated the amount of possible oxygen production for habitable planets around other types of host stars with various masses and temperatures.

They found that even in the least efficient production case of a low-temperature star, the photocatalytic reaction of the titanium oxide on about 3% of the planetary surface could maintain this level of atmospheric oxygen through abiotic processes. In other words, it is possible that a habitable extrasolar planet could maintain an atmosphere with Earth-like oxygen, even without organisms to perform photosynthesis.

Dr. Narita said, "To search for life on extrasolar planets through astronomical observation, we need to combine the knowledge from various scientific fields and to promote astrobiology researches to establish the decisive signs of life. Although oxygen is still one of possible biomarkers, it becomes necessary to look for new biomarkers besides oxygen from the present result."

###

Article:

Title: Titania may produce abiotic oxygen atmospheres on habitable exoplanets
Authors: Norio Narita1,2,3, Takafumi Enomoto3,4, Shigeyuki Masaoka3,4, Nobuhiko Kusakabe2
Affiliation: 1. Astrobiology Center, 2: National Astronomical Observatory of Japan, 3: SOKENDAI (The Graduate University for Advanced Studies), 4:Institute for Molecular Science
Scientific Reports, 2015 Sep 10

Contact Information:

Science Contact:
Astrobiology Center, National Institutes of Natural Sciences
Research Assistant Professor
Dr. Norio Narita
E-mail: norio.narita@nao.ac.jp
Tel: +81-422-34-3543,

PR Contact:
National Institutes of Natural Sciences
E-mail a.koizumi@nins.jp (Dr. Amane Koizumi)
nins-kikakurenkei@nins.jp
TEL: +81-3-5425-1898 FAX +81-3-5425-2049

National Astronomical Observatory of Japan
Chief Public Information Officer,
Dr. Masaaki Hiramatsu
Email: hiramatsu.masaaki@nao.ac.jp

Public Relations, Institute for Molecular Science, Natural Institutes of Natural Sciences
E-mail: kouhou@ims.ac.jp
TEL/FAX?+81-564-55-7262

Media Contact

Dr. Norio Narita
norio.narita@nao.ac.jp
81-422-343-543

http://www.nins.jp/english/ 

Dr. Norio Narita | EurekAlert!

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>