Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One year in space: University satellite proves its durability

27.11.2014

UWE-3, the satellite developed by the University of Würzburg, is a technical marvel: On November 21, it has been in space for exactly a year – and it is still functioning perfectly. This is an extraordinary feat given the harsh conditions in outer space and the fact that the satellite was built solely from commercial components.

UWE-3 is one of a new generation of experimental satellites developed by the University of Würzburg (short: UWE): This mini-satellite is even more compact and efficient than its predecessors. Since 21 November 2013, UWE-3 has orbited Earth at an altitude of 600 kilometres.


The Würzburg satellite UWE-3 has been running smoothly in space for over a year now.

(Photo: Department of Computer Science VII)

The cube, which weighs around a kilogramme and has an edge length of ten centimetres, was designed and built by Würzburg students, in particular by members of the SpaceMaster programme as well as doctoral candidates.

The satellite's on-board data processing system has been working non-stop for a year now – "and that despite the fact that it has undoubtedly been exposed to very strong cosmic radiation," says Klaus Schilling, professor of computer science at the department where UWE-3 was developed.

Radiation-tolerant thanks to software

Consisting solely of commercial components which are not radiation-hardened, the satellite's uninterrupted one-year operation is made possible by an advanced fault analysis and correction programme. "This 'software-based radiation tolerance' is an innovative approach to implement highly reliable data processing systems on Earth as well," Schilling explains.

Most other mini-satellites that were launched into space in 2013 on the same rocket as UWE-3 have already failed or accomplished their tasks with major interruptions only.

UWE-3 a product of international cooperation

The UWE-3 project has opened up interesting perspectives in international cooperation for the Würzburg scientists such as, for example, with aeronautics university associations worldwide like UNISECglobal and the Space University Advisory Committee.

The collaboration with the global community of amateur radio operators (AMSAT) has been particularly fruitful. At first, the amateur radio operators e-mailed the telemetry data to Würzburg - today, however, they are streaming the data live into the Würzburg database over the Internet. "As a result, our database has grown by more than 65,000 additional data records from all over the world," Schilling further.

What are the satellite's tasks?

The UWE platform has allowed the Würzburg team to successfully demonstrate a highly miniaturised on-board position detection and control system for the first time. The system determines the satellite's orientation based on data collected by gyroscopes, magnetometers and solar sensors with an accuracy of a few degrees. Like a compass it aligns with Earth's magnetic field in a highly efficient process that uses magnetic field coils.

In combination with a very small reaction wheel, the computer scientists were able to perform numerous experiments on satellite alignment control using different software variants. According to their forecast, the results will be significant for later observations of Earth's surface through mini-satellites.

The software functions also allow the intensity and the global distribution of malfunctions in the frequently used UHF frequency band to be characterised with greater accuracy in order to further improve the communication link for future UWE missions.

New goals for UWE mission now

Having successfully completed the experiments in orbit, UWE-3 will continue its operation beyond the originally planned mission duration of three months with new goals – thanks to an extensive expansion of the on-board software programmed from Earth.

This was possible due to the redundant design of the microprocessor system for on-board data processing which allowed the Würzburg team to install software updates without jeopardising the running operation. Additional software expansions for the Würzburg satellite are planned for 2015 – and the scientists are confident that the small machine will continue to run smoothly until then.

Contact

Prof. Dr. Klaus Schilling, Department of Computer Science VII (Robotics and Telematics), Phone +49 931 31-86647, schi@informatik.uni-wuerzburg.de


Weitere Informationen:

http://www.luft-und-raumfahrt.informatik.uni-wuerzburg.de/  Bachelor programme "Luft- und Raumfahrtinformatik"
http://www.spacemaster.uni-wuerzburg.de/  Master programme "Space Science and Technology"

Robert Emmerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>