Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New record at ultracold neutron source in Mainz

15.01.2018

TRIGA research reactor at Mainz University improved the yield of its ultracold neutron source by a factor of 3.5 to 8.5 ultracold neutrons per cubic centimeter

Some ten years ago, Johannes Gutenberg University Mainz (JGU) entered a new field of research by starting to generate ultracold neutrons (UCN) for use in fundamental research in physics. Now that the new upgrade was installed, the participating researchers, physicists, and chemists can report another major breakthrough.


View of the reactor hall with beam tube C front left and beam tube D rear left

photo/©: Thomas Hartmann, JGU


Standardized stainless-steel cylinder, which is used as a storage vessel and for measurements

photo/©: Christopher Geppert, Institute of Nuclear Chemistry

They have been able to increase the UCN yield of their source by a factor of 3.5. This means that the prerequisites are now in place that are needed to begin the more sensitive measurements required to determine the lifetime of the free neutron.

Neutrons do not normally exist in a free state but are instead bound as neutral particles within the atomic nucleus. Free neutrons are unstable and decay with a lifetime of approximately 15 minutes. The TRIGA Mainz research reactor can generate thermal neutrons, which—by being brought into contact with solid deuterium at roughly minus 270 degrees Celsius—are furthermore slowed down so that they travel at just approximately five meters per second.

At this velocity, free neutrons can be stored and utilized in experiments. Scientists involved in fundamental research are particularly interested in determining the properties of these free neutrons, especially their lifetime and electric dipole moment, by means of highly accurate measurements. These have recently been supplemented by experiments to determine the electric charge of the neutron.

"The limiting factor in all these experiments and measurements is dictated by the density of ultracold neutrons we can achieve," explained Professor Werner Heil, one of the scientists at the UCN facility of Mainz University.

Scientists all around the world are currently developing new UCN sources. The Mainz TRIGA reactor can generate neutrons in pulse mode operation, which means that the reactor is pulsed every five minutes and thereby delivers a high neutron flux. After decelerating these neutrons using a block of solid deuterium, they are passed through a neutron guide, similar to a fiber-optic cable, for use in experiments outside the biological shield of the reactor. Besides the source upgrade the infrastructure has also been further improved.

The installation of a helium liquefier directly on site provides for more effective cooling of the deuterium crystal and creates excellent conditions for experiments to be run over long time periods. The neutrons from the reactor are transported to the site of experiments via electropolished stainless-steel tubes with an extremely smooth internal surface that prevents neutron losses. These tube inner walls have now received a new coating of a nickel-58-molybdenum alloy to further enhance their performance.

Internationally competitive UCN source in Mainz

With this set of measures, the scientists have succeeded in storing 8.5 UCN per cubic centimeter. "Compared to our previous results we were able to increase the UCN yield by a factor of 3.5," emphasized Professor Norbert Trautmann of the JGU Institute of Nuclear Chemistry. The storage vessel employed was a standardized stainless-steel cylinder, specially supplied by the Paul Scherrer Institute (PSI) in Switzerland for normed measurements.

This vessel used for a comparative study of ultracold neutron sources in operation has a volume of 32 liters, which corresponds to typical storage vessels for UCN experiments. This setup is generally regarded as the most reliable way of undertaking the corresponding measurements. A density of 8.5 UCN per cubic centimeter puts Mainz in the premier league in this respect. "We are now fully competitive with the world’s leading institutes in the field," stated Heil.

"The increased UCN density is particularly important for lifetime experiments, which should start soon," added Professor Tobias Reich, head of the JGU Institute of Nuclear Chemistry, which accommodates the TRIGA reactor. The experiments will be performed within the framework of the Precision Physics, Fundamental Interactions and Structure of Matter (PRISMA) Cluster of Excellence at Mainz University, which has provided funds for the development of infrastructure and for personnel at the Mainz UCN source.

Thanks to the improved performance, the scientists are confident of achieving an enhanced quality of their experiments in the future in a much shorter time. Exactly determining the lifetime of the free neutron is of major interest because the two commonly used methods, i.e., storing UCN in material vessels and the 'neutron beam method' used to detect decay products (protons) in flight, yield different results. This may be due to either unrecognized systematic errors or to possible exotic decay channels, an indicator for physics beyond the Standard Model.

The UCN measurements were carried out using beam tube D of TRIGA Mainz. This source is mainly operated in pulse mode and is also available to external users. "For future experiments, such as lifetime measurements, we will be able to utilize the source in double-shift operation for three weeks from 8 a.m. to midnight," added Dr. Christopher Geppert, manager of the TRIGA Mainz.

Images:
http://www.uni-mainz.de/bilder_presse/09_kernchemie_ucn_upgrade_01.jpg
View of the reactor hall with beam tube C front left and beam tube D rear left
photo/©: Thomas Hartmann, JGU

http://www.uni-mainz.de/bilder_presse/09_kernchemie_ucn_upgrade_02.jpg
Standardized stainless-steel cylinder, which is used as a storage vessel and for measurements
photo/©: Christopher Geppert, Institute of Nuclear Chemistry

Publication:
Jan Kahlenberg et al.
Upgrade of the ultracold neutron source at the pulsed reactor TRIGA Mainz
The European Physical Journal A, 28 November 2017
DOI: 10.1140/epja/i2017-12428-9
https://link.springer.com/article/10.1140%2Fepja%2Fi2017-12428-9

Contact:
Professor Dr. Werner Heil
Quantum, Atomic, and Neutron Physics (QUANTUM)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-22885
fax +49 6131 39-25179
e-mail: wheil@uni-mainz.de
http://www.ag-heil.physik.uni-mainz.de/

Professor Dr. Tobias Reich
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25250
e-mail: tobias.reich@uni-mainz.de
http://www.kernchemie.uni-mainz.de/eng/

Read more:
http://www.uni-mainz.de/presse/20540_ENG_HTML.php – press release "TUM and Mainz University activate new source of ultracold neutrons" (8 Nov. 2016) ;
http://www.uni-mainz.de/presse/14192_ENG_HTML.php – press release "Ultracold neutrons for science : UCNs will help to solve mysteries of astrophysics" (9 June 2011) ;
http://www.uni-mainz.de/presse/12971_ENG_HTML.php – press release "Physicists at Mainz University generate ultracold neutrons at the TRIGA reactor" (19 Dec. 2008) ;
http://www.uni-mainz.de/presse/14343_ENG_HTML.php – press release "Successful generation of ultracold neutrons" (1 Feb. 2006)

Weitere Informationen:

http://www.prisma.uni-mainz.de/triga.php – TRIGA Reactor and Neutron Source ;
http://www.ag-heil.physik.uni-mainz.de/342_ENG_HTML.php – UCN Source at the TRIGA Mainz

Petra Giegerich | idw - Informationsdienst Wissenschaft

Further reports about: JGU TRIGA cylinder fundamental research reactor ultracold neutrons

More articles from Physics and Astronomy:

nachricht Supercomputers without waste heat
07.12.2018 | Universität Konstanz

nachricht DF-PGT, now possible through massive sequencing techniques
06.12.2018 | Universitat Autonoma de Barcelona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Proteins imaged in graphene liquid cell have higher radiation tolerance

10.12.2018 | Materials Sciences

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>