Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Paths into the World of Quasiparticles

10.07.2014

Quasiparticles can be used to explain physical phenomena in solid bodies even though they are not actual physical particles.

Physicists in Innsbruck have now realized quasiparticles in a quantum system and observed quantum mechanical entanglement propagation in a many-body system. The researchers have published their work in Nature.


The quasiparticles disperse to both sides of the excitation site on the ion-string, thereby, transporting quantum correlations. IQOQI

Christian Roos’ research team at the Institute for Quantum Optics and Quantum Information at the Austrian Academy of Sciences in Innsbruck has established a new experimental platform for investigating quantum phenomena: In a string of trapped ultracold ions they can precisely initialise, control and measure the states and properties of quasiparticle excitations in a many-body quantum system.

“Quasiparticles are a well-established concept in physics to describe the collective behaviour of particles in a simplified way,” says Christian Roos.

Entanglement propagation

For the experiment the physicists used a one-dimensional ion-string consisting of between seven and fifteen calcium ions trapped in a vacuum chamber. Laser beams then manipulate the quantum state of the ions. “Each particle behaves like a little quantum magnet interacting with each other,” explains Petar Jurcevic, first author of this study. “The precise excitation of one of the particles also affects the other particles. The resulting collective behaviour of the system is called quasiparticles.”

These quasiparticles disperse to both sides of the excitation site on the ion-string, thereby, transporting quantum correlations. Excitation distribution has previously been observed in experiments with neutral atoms, where correlations between particles have also been shown.

“In our experiments we have been able to determine that these correlations are quantum correlations,” says Roos. “By measuring multi-particle correlations we have been able to detect and quantify quantum entanglement.” The physicists were, thus, the first to show entanglement propagation in a quantum system. 

In contrast to previous experiments, the researchers in Innsbruck can tune the ion-ion interaction range in the system from effectively nearest-neighbour to infinite range. In each case, a new set of quasiparticles is created with unique dynamical properties.

New research with quasiparticles

“With this new scheme we can precisely manipulate the quasiparticles,” says an excited Philipp Hauke, one of the authors of this study. “It has taken us decades to come up with ways to precisely control and manipulate quantum particles. With this platform we can now do the same with quasiparticles and investigate phenomena that we haven’t been able to study experimentally.”

For example, it opens up new paths to study how quantum systems reach equilibrium, including the question of when thermalisation occurs, a process that so far has remained elusive. “Another big goal is to utilize quasiparticles for quantum information processing,” says Hauke.

In addition, this platform could also be used to study the role of transport processes in biological systems. At the moment Christian Roos’ research team is working on the idea to investigate interaction processes between two quasiparticles.

The study, now published in Nature, was jointly conducted by Peter Zoller’s theoretical research group and Rainer Blatt’s experimental research team at the Institute for Quantum Optics and Quantum Information at the Austrian Academy of Sciences and the University of Innsbruck. The researchers are funded by the Austrian Science Fund, the European Commission, the European Research Council and the Federation of Austrian Industries Tyrol.

Publication: Quasiparticle engineering and entanglement propagation in a quantum many-body system. P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos. Nature 2014 DOI: 10.1038/nature13461

Contact:
Christian Roos
Institute for Quantum Optics and Quantum Information
Austrian Academy of Sciences
Phone: +43 512 507 4728
Email: christian.roos@uibk.ac.at

Christian Flatz
Public Relations
Phone: +43 512 507 32022
Mobile: +43 676 872532022
Email: christian.flatz@uibk.ac.at

Weitere Informationen:

http://quantumoptics.at - Quantum Optics and Spectroscopy Group

Dr. Christian Flatz | Universität Innsbruck

Further reports about: Quantum Quasiparticles ions manipulate phenomena processes propagation

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>