Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New measurement of the universe's expansion rate strengthens call for new physics

09.01.2020

Using cosmic lenses an international team of astrophysicists determined the universe's expansion rate, completely independent of any previous method. The researchers' result further strengthens a troubling discrepancy between the expansion rate calculated from measurements of the local universe and the rate as predicted from background radiation of the early universe. The new study adds evidence to the idea that new theories may be needed to explain the underlying physics.

Knowing the precise value for the Hubble constant, a measure for how fast the universe expands, is important for determining the age, size, and fate of our cosmos. Unraveling this mystery is one of the greatest challenges in astrophysics.


Hubble Space Telescope images of faraway quasars lensed by foreground galaxies that were used to measure the Hubble constant.

S.H. Suyu / TUM/MPA; K.C. Wong / Univ. Tokyo; NASA; ESA


Prof. Dr. Sherry Suyu, professor at the Technical University of Munich, group leader at the Max Planck Institute for Astrophysics (MPA) in Garching near Munich

Johannes Wiedersich / TUM

An international team, led by Sherry Suyu, professor at the Technical University of Munich (TUM), group leader at the Max Planck Institute for Astrophysics (MPA) and visiting scholar of the Academia Sinica Institute of Astronomy and Astrophysics in Taipei, Taiwan, has now measured the universe's expansion rate completely independent of previous methods.

This latest value for the Hubble constant represents the most precise measurement yet using gravitational lensing, where the gravity of a foreground galaxy acts like a giant magnifying lens, amplifying and distorting light from background objects. Through the lensing effect, multiple images of the same background object appear around the foreground galaxy.

Depending on the position of the object behind the foreground galaxy, the light of the different images has to travel over unlike distances to reach the observer. Brightness fluctuations of the background object therefore arrive at different times for each of the multiple images. The time delay can be measured in lensed quasar systems, where quasars are extremely distant cosmic streetlights produced by active black holes.

A worldwide effort

The team of astrophysicists is dubbed H0LiCOW (H0 Lenses in COSMOGRAIL's Wellspring). COSMOGRAIL is the acronym for Cosmological Monitoring of Gravitational Lenses, a large international project whose goal is monitoring gravitational lenses. "Wellspring" refers to the abundant supply of quasar lensing systems.

For their latest measurement, the team used new data from the Hubble Space Telescope as well as from the ESO/MPG 2.2 m telescope at La Silla, ESO’s Very Large Telescope, wide-field imaging from the Dark Energy Survey, all three in Chile, and high-resolution Adaptive Optics imaging from Keck Observatory, Hawaii.

H0LiCOW and other recent measurements suggest a faster expansion rate in the local universe than was expected based on observations by the European Space Agency's Planck satellite of how the cosmos behaved more than 13 billion years ago.

Significant differences

The researchers calculated a value for the Hubble constant of 73 kilometers per second per megaparsec (with 2.4 percent uncertainty). The team's measurement is close to the value of 74 calculated by the SH0ES team (Supernova H0 for the Equation of State). The SH0ES measurement is based on gauging the distances to galaxies near and far from Earth by using Cepheid variable stars and supernovas as measuring sticks to the galaxies.

The SH0ES and H0LiCOW values significantly differ from the Planck number of 67, strengthening the tension between Hubble constant measurements of the local universe and the predicted value based on observations of the early universe.

New physics needed to account for the mismatch

“While our first results already hinted at this high value for the Hubble constant, we are now more certain that there is indeed a systematic difference between the values at early and late cosmic times,” explains Suyu.

Stefan Taubenberger, team member at the MPA further adds “Our H0LiCOW value is significantly higher than Planck’s value – scientifically speaking, with more than 3-sigma significance. Combined with the SH0ES measurement the significance increases even further.”

The gulf between the two values has important implications for understanding the universe's underlying physical parameters and may require new physics to account for the mismatch. “If these results do not agree, it may be a hint that we do not yet fully understand how matter and energy evolved over time, particularly at early times,” said Suyu.

Refining the measurements

Starting in 2012, the H0LiCOW team now has Hubble images and time-delay information for 10 lensed quasars and intervening lensing galaxies. The team will continue to search for and follow up on new lensed quasars in collaboration with researchers from new programs. The team's goal is to observe 30 more lensed quasar systems to reduce their uncertainty for the Hubble constant measurement to one percent.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Sherry Suyu
Technical University of Munich
Max Planck Institute for Astrophysics
Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
Tel.: +49 89 30000 2015 - E-Mail: suyu@mpa-garching.mpg.de

Stefan Taubenberger
Max Planck Institute for Astrophysics
Tel.: +49 89 30000 2019 - E-Mail: tauben@mpa-garching.mpg.de

Originalpublikation:

Results presented at the 235th meeting of the American Astronomical Society in Honolulu, Hawaii, Jan 8, 2020

H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3 σ tension between early and late Universe probes
Kenneth C. Wong, Sherry H. Suyu, et.al.
Monthly Notices of the Royal Astronomical Society (in press) - https://arxiv.org/abs/1907.04869

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35862/ Press release on the website of the Technical University of Munich


https://hubblesite.org/contents/news-releases/2020/news-2020-04 Press release on the Hubble-website


https://shsuyu.github.io/H0LiCOW/site/ Website of the H0LiCOW-Team

Dr. Ulrich Marsch | Technische Universität München

Further reports about: Galaxies Hubble MPA Max Planck Institute astrophysics quasars

More articles from Physics and Astronomy:

nachricht Scientists see energy gap modulations in a cuprate superconductor
02.04.2020 | DOE/Brookhaven National Laboratory

nachricht BESSY II: Ultra-fast switching of helicity of circularly polarized light pulses
02.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>