Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dynamic dependency framework may lead to better neural social and tech systems models

25.02.2019

Many real-world complex systems include macroscopic subsystems which influence one another. This arises, for example, in competing or mutually reinforcing neural populations in the brain, spreading dynamics of viruses, and elsewhere. It is therefore important to understand how different types of inter-system interactions can influence overall collective behaviors.

In 2010 substantial progress was made when the theory of percolation on interdependent networks was introduced by Prof. Shlomo Havlin and a team of researchers from the Department of Physics at Bar-Ilan University in a study published in Nature.


In a paper published recently in Nature Physics, Bar-Ilan University Prof. Havlin, and a team of researchers, including Stefano Boccaletti, Ivan Bonamassa, and Michael M. Danziger, present a dynamic dependency framework that can capture interdependent and competitive interactions between dynamic systems which are used to study synchronization and spreading processes in multilayer networks with interacting layers. Main results in this image. (Top Left) Phase diagram for two partially competitive Kuramoto models with regions of multistability. (Top Right) Theoretical and numerical results for the ow in interdependent SIS epidemics (Erdos-Renyi graphs, average degree = 12). (Bottom Left) Path-dependent (awakening) transitions in asymmetrically coupled SIS dynamics. (Bottom Right) Critical scaling of bottlenecks (ghosts in saddle-node bifurcations) above the hybrid transitions in interdependent dynamics

Credit: Prof. Shlomo Havlin and team

This model showed that when nodes in one network depend on nodes in another to function, catastrophic cascades of failures and abrupt structural transitions arise, as was observed in the electrical blackout that affected much of Italy in 2003.

Interdependent percolation, however, is limited to systems where functionality is determined exclusively by connectivity, thus providing only a partial understanding to a wealth of real-world systems whose functionality is defined according to dynamical rules.

Research has shown that two fundamental ways in which nodes in one system can influence nodes in another one are interdependence (or cooperation), as in critical infrastructures or financial networks, and antagonism (or competition), as observed in ecological systems, social networks, or in the human brain.

Interdependent and competitive interactions may also occur simultaneously, as observed in predator-prey relationships in ecological systems, and in binocular rivalry in the brain.

In a paper published recently in Nature Physics, Bar-Ilan University Prof. Havlin, and a team of researchers, including Stefano Boccaletti, Ivan Bonamassa, and Michael M. Danziger, present a dynamic dependency framework that can capture interdependent and competitive interactions between dynamic systems which are used to study synchronization and spreading processes in multilayer networks with interacting layers.

"This dynamic dependency framework provides a powerful tool to better understand many of the interacting complex systems which surround us," wrote Havlin and team. "The generalization of dependent interactions from percolation to dynamical systems allows for the development of new models for neural, social and technological systems that better capture the subtle ways in which different systems can affect one another."

Prof. Havlin's research since 2000 has produced groundbreaking new mathematical methods in network science which have led to extensive interdisciplinary research in the field. Following Havlin's and his colleagues' publication of the theory of percolation, he received the American Physical Society's Lilienfeld Prize, which is awarded for "a most outstanding contribution to physics". Earlier this year he received the Israel Prize in Chemistry and Physics.

Elana Oberlander | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41567-018-0343-1

More articles from Physics and Astronomy:

nachricht Silicon 'neurons' may add a new dimension to computer processors
05.06.2020 | Washington University in St. Louis

nachricht The broken mirror: Can parity violation in molecules finally be measured?
04.06.2020 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>