Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MSU scientists created a magnetic trap for neutrons

10.01.2018

A team from Skobeltsyn Institute of Nuclear Physics (MSU) together with their colleagues developed a magnetic waveguide able to sort neutrons with different spins and storethem different layers. The results of the study may help in study of electronic devices based on not charge of electrons but on their quantum state. The article was published in Physical Review B journal.

Waveguides are quite a broad class of objects utilized in many spheres of life, from telecom (optic wave guides) to medicine (a stethoscope is a sound wave guide). The principle of wave guides operation is based on locking a wave between two reflective walls. The same principle of concentration of radiation in a narrow space is used to "lock in" neutrons.


(a) Standard swaveguide structure consisting of reflective layers A and C and transparent layer B between them. (b,c) Magnetic waveguide structure consisting of three layers A, B (magnetic) and C on a substrate D. The red line shows the reflecting ability of the layers. The black line shows depth distribution of neutron density. Spin-up neutrons are trapped into the layer C, and spin-down neutrons into layer B

Credit: Yury Khaydukov

To make a neutron waveguide one needs to place (almost) transparent for neutrons layer between two reflective layers. Created thus neutron well allows to trap neutrons in the central layer (Fig. 1a). Neutron waveguides are also called resonators because the density of neutrons in the transparent layer is amplified resonantly (just like the sound in an empty room). Such resonant amplification may be used in many areas, from fundamental nuclear physics studies to exotic spheres of application (like nano-reactors).

A group of researchers has recently proposedto use as reflecting walls magnetic field rather than substance. The point is that neutrons,like electrons, have their magnetic moment called spin. Due to this magnetic moment neutrons can be reflected from magnetic field, just like light quanta are reflected in the optic fiber.

Moreover, the reflecting ability depends on a neutron's spin: for spin-up particles it is higher than for the spin-down ones. Based on this effect the team has developed a waveguide based on a magnetic reflection. To do this, three layers with similar scattering ability were deposited on a neutron-impenetrable substrate.

The second layer from the top has magnetic moment increasing thusits reflecting ability for spin-up neutrons and reducing it for the spin-down ones. Thus, for different neutrons transparent layers are also different: spin-down particlesare locked in the magnetic layer, and spin-up neutrons - in the non-magnetic one.

"Besides the childish excitement that we've managed to sort and lock neutrons with different spins- we plan to utilize this effect for the research in the field of spintronics, including its new branches as oxide and superconducting," said Dr. Yury Khaydukov, scientific associate of Skobeltsyn Institute of Nuclear Physics (MSU).

###

Neutron beams for such studies are obtained at research reactors and accelerators. A world class reactor in Russia is e.g. located in Dubna, Moscow Region. A launch of another powerful reactor PIK in Gatchina (Leningrad Region) is scheduled for 2019. This study was conducted at the Munich research reactor in collaboration with scientists from Max Planck Institute for Solid State Research (Germany), Kotelnikov Institute of Radiophysics and Electronics of the Russian Academy of Sciences (Russsia), and Chalmers University of Technology (Sweden).

Media Contact

Yana Khlyustova
science-release@rector.msu.ru

http://www.msu.ru 

Yana Khlyustova | EurekAlert!

Further reports about: MSU Neutron Nuclear Physics magnetic field magnetic moment neutrons sound wave waveguide

More articles from Physics and Astronomy:

nachricht Superflares from young red dwarf stars imperil planets
22.10.2018 | NASA/Goddard Space Flight Center

nachricht Pushing the (extra cold) frontiers of superconducting science
22.10.2018 | DOE/Ames Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Enabling a plastic-free microplastic hunt: "Rocket" improves detection of very small particles

22.10.2018 | Ecology, The Environment and Conservation

Superflares from young red dwarf stars imperil planets

22.10.2018 | Physics and Astronomy

Accurate evaluation of chondral injuries by near infrared spectroscopy

22.10.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>