Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moving forward, spin goes sideways

10.10.2011
Improvements to specialized valves that separate spin and electron currents may lead to higher-density magnetic media

Building electronic devices that work without needing to actually transport electrons is a goal of spintronics researchers, since this could lead to: reduced power consumption, lower levels of signal noise, faster operation, and denser information storage. However, the generation of pure spin currents remains a challenge.

Now, YoshiChika Otani and colleagues at the RIKEN Advanced Science Institute, Wako, and five other research institutes in Japan and China, have produced a large spin current in an important spintronic device called a lateral spin valve.

Spintronic devices store information in the spin of electrons, rather than in their density or energy level. Information flows through the propagating waves of spin orientation, while electrical charges remain stationary. Inside a lateral spin valve, a current of electron spins—but not of electron charges—is injected into a nonmagnetic wire through a ferromagnetic contact.

The current travels down the wire, and creates an output voltage across a second ferromagnetic contact, which serves as the output of the device. This lateral arrangement is important because it allows charge and spin currents to flow independently and permits the use of multiple terminals. However, while a practical lateral spin valve would require a large output voltage, previous devices had produced only 1 microvolt or less.

To increase the output voltage of their device, Otani and colleagues concentrated on the quality of the junction between the two ferromagnetic contacts and the non-magnetic, silver wire. Between the wire and the ferromagnets made of nickel and iron, the researchers placed a thin layer of magnesium oxide, which served to increase the efficiency of spin injection. They found that the straightforward annealing of their device at 400 °C in a mostly nitrogen environment reduced the quantity of oxygen in this interfacial layer.

This lowered junction resistance by a factor of up to 1,000, and increased the efficiency of spin injection into the silver wire. As a result, the output voltage reached 220 microvolts, which is more than 100 times greater than that of existing devices. In addition, the research team was able to observe the injected spins rotating, of what is technically known as precessing, in response to a magnetic field along the entire length of their 6-micrometer silver wire, confirming high spin injection efficiency.

The spin valve could be further improved, says Otani, by using cobalt–iron ferromagnets, which are known to have greater spin injection efficiency than nickel–iron, with potential near-term application as sensors in high-density magnetic media.

The corresponding author for this highlight is based at the Quantum Nano-Scale Magnetics Team, RIKEN Advanced Science Institute

Reference:
Fukuma, Y., Wang, L., Idzuchi, H., Takahashi, S., Maekawa, S. & Otani, Y. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nature Materials 10, 527–531 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Advanced Investigator Grant MOVING RIKEN electron spin

More articles from Physics and Astronomy:

nachricht New method gives microscope a boost in resolution
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A new 'spin' on kagome lattices
10.12.2018 | Boston College

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>