Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular magnets swirl together

20.10.2014

Efficient transfer of information with organic molecules and skyrmions

On the quest for novel solutions for future information technology, scientists from the University of Hamburg and the Forschungszentrum Jülich managed to couple molecular magnets through a lattice of magnetic skyrmions – a whirl in the magnetization of special materials – and to transfer digital infor-mation over large distances. Using the magnetization to store and transfer information outperforms current electronic components due to greatly reduced power consumption while largely enhancing processing speed.


An illustration of molecular magnets embedded in a skyrmion lattice.

J. Brede, research group of Prof. R. Wiesendanger, University of Hamburg

The innovations in information technology are still happening at a tearing pace but in particular in the mobile sector conventional semiconductor technology will reach its limits soon. Therefore the quest for novel and efficient methods to store, transport, and manipulate data at an ultimately small scale is cur-rently a vibrant field of research.

A particularly promising approach is the field of “nano-spintronics”, where the “spin” rather than the charge of the electron is utilized. In a simplified picture the spin of the electron can be understood as the rotation of the electron about its axis. In 2011, physicists from Hamburg University demonstrated a spintronic-logic gate built up of individual magnetic atoms and nano-islands. However, a severe limitation of the realized logic gate was the operating temperature close to absolute zero (-273°C).

Consequently, a way to realize more stable structures capable of operation at higher temperatures was searched for. A promising template was the magnetic skyrmion lattice which was discovered in Hamburg in 2011. The magnetic skyrmions can be pictured as whirls in a “sea” of atomic magnets; the skyrmion magnetization “swirls” by 360° from the edge to the center.

The blessing of the skyrmion lattice – its inherent stability against external perturbations – is also its curse, how to utilize such a robust structure for information processing?

To overcome this obstacle the scientists deposited cost-efficient and readily prepared organic molecules on an iron film of one atomic layer thickness on an iridium substrate. The molecules bond the underlying iron atoms together to form well-defined molecular magnets which are embedded within the skyrmion lattice.

In the figure shown below, the digital information contained within the molecular magnets – the magnetization points either up (red=1) or down (green=0) - is visualized and another advantage of the fabrication method becomes apparent: it is possible to tailor magnets by choosing the appropriate size of the organic molecule, i.e. “larger” molecules make stronger magnets.

While the approach to employ cost-efficient molecules to create tailored magnets holds promise for ap-plication in data storage in itself it is another observation that fascinated the physicists in particular. The scientists noticed that the molecular magnets could be coupled through the skyrmion lattice: When one of the molecular magnets was flipped by applying an external magnetic field, another molecular magnet, situated several nanometers away, flipped as well, the information “swirling” through the skyrmion lat-tice.

Utilizing this method information can be transferred over long distances save, fast, and energy-efficient since there is no need for a flow of electrons. Extending this approach further and coupling multiple mo-lecular magnets in appropriate ways, more complex structures such as ultra-small logic-gates can be envi-sioned.

Another benefit of using the magnetization for computation is the non-volatile nature of the in-formation which becomes clear after restarting a device: it is possible to continue right where one left off. The long and tedious process of booting the electronic device becomes obsolete.

Original publication:

Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice
J. Brede, N. Atodiresei, V. Caciuc, M. Bazarnik, A. Al-Zubi, S. Blügel, and R. Wiesendanger,
Nature Nanotechology (2014) .
DOI: 10.1038/nnano.2014.235

Additional Information:
Prof. Dr. Roland Wiesendanger
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 11a, 20355 Hamburg
Tel.: (0 40) 4 28 38 - 52 44
Fax: (0 40) 4 28 38 - 24 09
E-Mail: wiesendanger@physnet.uni-hamburg.de

Weitere Informationen:

http://www.sfb668.de
http://www.nanoscience.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>