Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mission to discover hundreds of black holes could unlock secrets of the Universe

14.11.2014

A team of Cardiff University researchers have made a breakthrough in helping scientists discover hundreds of black holes throughout the universe.

When two detectors are switched on in the US next year, the Cardiff team hope their research will help scientists pick up the faint ripples of black hole collisions millions of years ago, known as gravitational waves.


Cataclysmic events, such as this artist's rendition of a binary-star merger, are believed to create gravitational waves that cause ripples in space-time.

Black holes cannot be seen, but scientists hope the revamped detectors - which act like giant microphones - will find remnants of black hole collisions.

Led by Dr Mark Hannam from the School of Physics and Astronomy, the researchers have built a theoretical model which aims to predict all potential gravitational-wave signals that might be found by the detectors.

The Cardiff researchers hope it will act as a 'spotters' guide' to help scientists working with the giant LIGO detectors recognise the right waveforms and reveal the secrets of how black holes orbit into each other and collide.

Dr Hannam said: "The rapid spinning of black holes will cause the orbits to wobble, just like the last wobbles of a spinning top before it falls over. These wobbles can make the black holes trace out wild paths around each other, leading to extremely complicated gravitational-wave signals. Our model aims to predict this behaviour and help scientists find the signals in the detector data."

The Cardiff team, which includes postdoctoral researchers, PhD students, and collaborators from universities in Europe and the United States, will work with scientists across the world as they attempt to unravel the origins of the Universe.

Dr Hannam added: "Sometimes the orbits of these spinning black holes look completely tangled up, like a ball of string. But if you imagine whirling around with the black holes, then it all looks much clearer, and we can write down equations to describe what is happening. It's like watching a kid on a high-speed spinning amusement park ride, apparently waving their hands around. From the side lines, it's impossible to tell what they're doing. But if you sit next to them, they might be sitting perfectly still, just giving you the thumbs up."

The new model has been programmed into the computer codes that LIGO scientists all over the world are preparing to use to search for black-hole mergers when the detectors switch on. But there is still more work to do.

"So far we've only included these precession effects while the black holes spiral towards each other," said Dr Hannam. "We still need to work our exactly what the spins do when the black holes collide."

For that they need to perform large computer simulations to solve Einstein's equations for the moments before and after the collision. They'll need to produce many simulations to capture enough combinations of black-hole masses and spin directions to understand the overall behaviour of these complicated systems.

Dr Hannam is optimistic. "For years we were stumped on how to untangle the black-hole motion. Now that we've solved that, we know what to do next."

Time is running out. Once the detectors switch on, it will only be a matter of time before the first gravitational-wave detections are made. The calculations that Dr Hannam and his colleagues are producing have to be ready in time to make the most of them.

Editors' Notes

Copyright free NASA images of black hole gravitational waves are available at: http://nasasearch.nasa.gov/search/images?affiliate=nasa&query=black+hole+gravitational+waves

A paper outlining the research is published in Physical Review Letters

Reference: M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer," Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms", Phys. Rev. Lett. 113, 151101.

Academic Contact: Dr Mark Hannam, STFC Ernest Rutherford Fellow, School of Physics & Astronomy, Cardiff University. Tel: 029 208 7167 / 07597 633 642. mark.hannam@astro.cf.ac.uk

Heath Jeffries | EurekAlert!
Further information:
http://www.cardiff.ac.uk/

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>