Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopy technique could help computer industry develop 3-D components

01.07.2013
A technique developed several years ago at the National Institute of Standards and Technology (NIST) for improving optical microscopes now has been applied to monitoring the next generation of computer chip circuit components, potentially providing the semiconductor industry with a crucial tool for improving chips for the next decade or more.

The technique, called Through-Focus Scanning Optical Microscopy (TSOM), has now been shown able to detect tiny differences in the three-dimensional shapes of circuit components, which until very recently have been essentially two-dimensional objects.


The three-dimensional tri-gate (FinFET) transistors shown here are among the 3-D microchip structures that could be measured using NIST's technique for improving through-focus scanning optical microscopy (TSOM).

Credit: Courtesy of Intel Corp.

TSOM is sensitive to features that are as small as 10 nanometers (nm) across, perhaps smaller—addressing some important industry measurement challenges for the near future for manufacturing process control and helping maintain the viability of optical microscopy in electronics manufacturing.

For decades, computer chips have resembled city maps in which components are essentially flat. But as designers strive to pack more components onto chips, they have reached the same conclusion as city planners: The only direction left to build is upwards. New generations of chips feature 3-D structures that stack components atop one another, but ensuring these components are all made to the right shapes and sizes requires a whole new dimension—literally—of measurement capability.

"Previously, all we needed to do was show we could accurately measure the width of a line a certain number of nanometers across," explains NIST's Ravikiran Attota. "Now, we will need to measure all sides of a three-dimensional structure that has more nooks and crannies than many modern buildings. And the nature of light makes that difficult."

Part of the trouble is that components now are growing so small that a light beam can't quite get at them. Optical microscopes are normally limited to features larger than about half the wavelength of the light used—about 250 nanometers for green light. So microscopists have worked around the issue by lining up a bunch of identical components at regular distances apart and observing how light scatters off the group and fitting the data with optical models to determine the dimensions. But these optical measurements, as currently used in manufacturing, have great difficulty measuring newer 3-D structures.

Other non-optical methods of imaging such as scanning probe microscopy are expensive and slow, so the NIST team decided to test the abilities of TSOM, a technique that Attota played a major role in developing. The method uses a conventional optical microscope, but rather than taking a single image, it collects 2-D images at different focal positions forming a 3-D data space. A computer then extracts brightness profiles from these multiple out-of-focus images and uses the differences between them to construct the TSOM image. The TSOM images it provides are somewhat abstract, but the differences between them are still clear enough to infer minute shape differences in the measured structures—bypassing the use of optical models, which introduce complexities that industry must face.

"Our simulation studies show that TSOM might measure features as small as 10 nm or smaller, which would be enough for the semiconductor industry for another decade," Attota says. "And we can look at anything with TSOM, not just circuits. It could become useful to any field where 3-D shape analysis of tiny objects is needed."

*R. Attota, B. Bunday and V. Vartanian. Critical dimension metrology by through-focus scanning optical microscopy beyond the 22 nm node. Applied Physics Letters, DOI: 10.1063/1.4809512, published online June 6, 2013.

Chad Boutin | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: 3-D image 3-D structure Microscopy NIST TSOM optical data optical microscopy

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>