Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian Rover 'Opportunity' Finds Evidence of Water Flows at Ancient Impact Crater Endeavour

07.05.2012
Evidence of ancient water at a Martian crater is the latest in a long series of discoveries by a surprisingly long-lived Mars Exploration Rover Opportunity, according to a paper published in the May 4 edition of the journal Science entitled, “Ancient Impact and Aqueous Processes at Endeavour Crater, Mars.” The latest discovery was made at the rim of the Endeavour Crater, a large ancient impact crater on Mars measuring 14 miles in diameter.

“The rover discovered evidence for low temperature liquid water and environments that would be conducive for life,” said Scott M. McLennan, Professor of Geochemistry at Stony Brook University and a member of the team that published the paper (Steven Squyres of Cornell University headed the team and is the principal investigator for the science instruments carried by the rover). Dr. McLennan noted that this was the third area on Mars visited by the Mars rovers that has produced evidence of “habitable” ancient geological environments.

Opportunity was one of two exploration rovers that landed on Mars eight years ago for what was planned as a three-month mission. According to the NASA Jet Propulsion Laboratory, Opportunity reached Endeavour Crater last August after driving for three years from another Martian crater, Victoria.

Dr. McLennan said Opportunity found highly elevated levels of zinc in some of the rocks at the rim of the crater, suggesting that there was a hydrothermal system – warm water – running through the rocks at one time. In addition, veins of gypsum discovered at the crater were strong evidence that low temperature waters had at one time passed through those rocks.

“If we found this on Earth there would be no question that you could find evidence of life,” said Dr. McLennan, noting that the Rover sent back some “spectacular” photos of the gypsum veins.

The Mars Rover Opportunity has given Stony Brook faculty and graduate and undergraduate students the opportunity to collaborate for eight years on scientific study of Mars as part of the Stony Brook Mars rover group, Dr. McLennan said. While Opportunity and its sister Rover Spirit were scheduled to operate for three months, “Everyone felt they had the capability of lasting quite a bit longer, but nobody thought Opportunity would last this long.” NASA selected Dr. McLennan to participate in the Mars Exploration Rover (MER) Mission.

The mission consisted of two rovers that arrived on opposite sides of Mars in 2004. Dr. McLennan has investigated data on Martian rock and surface deposits to gain insight into the ancient climates of that planet and contribute to NASA's overarching strategy of Mars Exploration: "Follow the Water", the search for past life on Mars, understanding past climates and why the climate changed so drastically, and evaluating the planet for human exploration. Opportunity landed in Eagle Crater on Mars on Jan. 25, 2004, three weeks after its rover twin, Spirit, landed halfway around the planet. Spirit stopped communicating in March 2010.

Powered by solar panels, Opportunity went into “hibernation” on a sun facing slope at the crater’s rim during the Martian winter due to reduced sunlight. It is scheduled to come out of that hibernation by mid-2012 or earlier if wind cleans dust off its solar panels. According to NASA, researchers plan to drive Opportunity in search of clay minerals that a Mars orbiter's observations indicate lie on Endeavour's rim.

Scott M. McLennan | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>