Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifting the veil on the black hole at the heart of our Galaxy

21.01.2019

Including the powerful ALMA into an array of telescopes for the first time, astronomers have found that the emission from the supermassive black hole Sagittarius A* (Sgr A*) at the center of our Galaxy comes from a smaller region than previously thought. This may indicate that a radio jet from Sgr A* is pointed almost directly towards the Earth.

So far, a foggy cloud of hot gas has prevented astronomers from making sharp images of the supermassive black hole Sgr A* and causing doubt on its true nature. They have now included for the first time the powerful ALMA telescope in northern Chile into a global network of radio telescopes to peer through this fog, but the source keeps surprising them: its emission region is so small that the source may actually have to point directly at the direction of the Earth.


Sgr A* at 86 GHz: simulation (tl), added effects of scattering (tr), scattered image from observations (br), unscattered image, after removing the effects of scattering in the line of sight (bl).

S. Issaoun, M. Mościbrodzka, Radboud University/ M. D. Johnson, CfA


The Global Millimeter VLBI Array (GMVA), with ALMA added

S. Issaoun, Radboud University/ D. Pesce, CfA

Observing at a frequency of 86 GHz with the technique of Very Long Baseline Interferometry (VLBI), which combines many telescopes to form a virtual telescope the size of the Earth, the team succeeded in mapping out the exact properties of the light scattering blocking our view of Sgr A*. The removal of most of the scattering effects has produced a first image of the surroundings of the black hole.

The high quality of the unscattered image has allowed the team to constrain theoretical models for the gas around Sgr A*. The bulk of the radio emission is coming from a mere 300 milllionth of a degree, and the source has a symmetrical morphology.

“This may indicate that the radio emission is produced in a disk of infalling gas rather than by a radio jet,” explains Sara Issaoun, graduate student at the Radboud University Nijmegen in the Netherlands, who leads the work and has tested several computer models against the data.

“However, that would make Sgr A* an exception compared to other radio emitting black holes. The alternative could be that the radio jet is pointing almost at us”.

The German astronomer Heino Falcke, Professor of Radio Astronomy at Radboud University and PhD supervisor of Issaoun, calls this statement very unusual, but he also no longer rules it out.

Last year, Falcke would have considered this a contrived model, but recently the GRAVITY team came to a similar conclusion using ESO’s Very Large Telescope Interferometer of optical telescopes and an independent technique.

“Maybe this is true after all”, concludes Falcke, “and we are looking at this beast from a very special vantage point.”

Supermassive black holes are common in the centers of galaxies and may generate the most energetic phenomena in the known universe. It is believed that, around these black holes, matter falls in a rotating disk and part of this matter is expelled in opposite directions along two narrow beams, called jets, at speeds close to the speed of light, which typically produces a lot of radio light.

“Whether the radio emission seen from SgrA* originates from a symmetrical underlying structure, or is intrinsically asymmetric is a matter of intense discussion”, explains Thomas Krichbaum, member of the team.

Sgr A* is the nearest supermassive black hole and 'weighs' about 4 million solar masses. Its apparent size on the sky is less than a 100 millionth degree, which corresponds to the size of a tennis ball on the moon as seen from the Earth. To measure this, the technique of VLBI is required. The resolution achieved with VLBI is further increased by the observation frequency.

The highest frequency to date for VLBI is 230 GHz. “The first observations of Sgr A* at 86 GHz date from 26 years ago, led by Thomas Krichbaum at our Institute, with only a handful of telescopes. Over the years, the quality of the data and imaging capabilities has improved steadily as more telescopes join.”, says J. Anton Zensus, director at the Max Planck Institute for Radio Astronomy and head of its Radio Astronomy/VLBI division.

The findings of Issaoun and her international team including scientists from two research departments (Kramer & Zensus) at MPIfR describe the first observations at 86 GHz in which ALMA also participated, by far the most sensitive telescope at this frequency. ALMA became part of the Global Millimeter VLBI Array (GMVA), which is operated by the Max Planck Institute for Radio Astronomy, in April 2017. The participation of ALMA, made possible by the ALMA Phasing Project effort, has been decisive for the success of this project.

The participation of ALMA in mm-VLBI is important because of its sensitivity and its location in the southern hemisphere. In addition to ALMA, twelve radio telescopes in North America and Europe also participated in the network. The resolution achieved was twice as large as in previous observations at this frequency and produced the first image of Sgr A* that is considerably reduced in interstellar scattering (an effect caused by density irregularities in the ionized material along the line of sight between Sgr A* and the Earth)

To remove the scattering and obtain the image, the team used a technique developed by Michael Johnson of the Harvard-Smithsonian Center for Astrophysics (CfA). "Even though scattering blurs and distorts the image of Sgr A*, the incredible resolution of these observations allowed us to pin down the exact properties of the scattering,” says Johnson. “We could then remove most of the effects from scattering and begin to see what things look like near the black hole. The great news is that these observations show that scattering will not prevent the Event Horizon Telescope from seeing a black hole shadow at 230 GHz, if there's one to be seen."

Future studies at different wavelengths will provide complementary information and further observational constraints for this source, which holds the key to a better understanding of black holes, the most exotic objects in the known universe.


The data were correlated at the Max Planck Institute for Radio Astronomy (MPIfR), which also operates the Global Millimeter-VLBI Array (GMVA). Data analysis software was developed at the MIT Haystack Observatory and the Smithsonian Astrophysical Observatory.

Several members of the team worked in this project as part of the European Research Council funded BlackHoleCam (BHC) team.

The research team is also part of the Event Horizon Telescope (EHT) consortium, an international partnership of thirteen institutes from ten countries: Germany, the Netherlands, France & Spain (via IRAM), USA, Mexico, Japan, Taiwan, Canada and China (via EAO).

The participation of the Atacama Large Millimeter/submillimeter Array (ALMA) through the ALMA Phasing Project has been decisive for the success of this project.

The GMVA is partially supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 730562.

The research gteam comprises S. Issaoun, M. D. Johnson, L. Blackburn, C. D. Brinkerink, M. Mościbrodzka, A. Chael, C. Goddi, I. Martí-Vidal, J. Wagner, S. S. Doeleman, H. Falcke, T. P. Krichbaum, K. Akiyama, U. Bach, K. L. Bouman, G. C. Bower, A. Broderick, I. Cho, G. Crew, J. Dexter, V. Fish, R. Gold, J. L. Gómez, K. Hada, A. Hernández-Gómez, M. Janßen, M. Kino, M. Kramer, L. Loinard, R.-S. Lu, S. Markoff, D. P. Marrone, L. D. Matthews, J. M. Moran, C. Müller, F. Roelofs, E. Ros, H. Rottmann, S. Sánchez, R. P. J. Tilanus, P. de Vicente, M. Wielgus, J. A. Zensus, und G.-Y. Zhao.

Wissenschaftliche Ansprechpartner:

Dr. Thomas Krichbaum,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-295
E-mail: tkrichbaum@mpifr-bonn.mpg.de

Prof. Dr. Eduardo Ros,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-125
E-mail: ros@mpifr-bonn.mpg.de

Originalpublikation:

Sara Issaoun et al., The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA
2019, The Astrophysical Journal 871, 30 (https://doi.org/10.3847/1538-4357/aaf732).

Arxiv link: http://arxiv.org/abs/1901.06226

Weitere Informationen:

https://www.mpifr-bonn.mpg.de/pressreleases/2019/1

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Further reports about: ALMA GHz Galaxy Max-Planck-Institut Radioastronomie Telescopes VLBI black hole black holes radio emission

More articles from Physics and Astronomy:

nachricht Gravitational waves will settle cosmic conundrum
15.02.2019 | Simons Foundation

nachricht Spintronics by 'straintronics'
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>