Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifting the veil on the black hole at the heart of our Galaxy

21.01.2019

Including the powerful ALMA into an array of telescopes for the first time, astronomers have found that the emission from the supermassive black hole Sagittarius A* (Sgr A*) at the center of our Galaxy comes from a smaller region than previously thought. This may indicate that a radio jet from Sgr A* is pointed almost directly towards the Earth.

So far, a foggy cloud of hot gas has prevented astronomers from making sharp images of the supermassive black hole Sgr A* and causing doubt on its true nature. They have now included for the first time the powerful ALMA telescope in northern Chile into a global network of radio telescopes to peer through this fog, but the source keeps surprising them: its emission region is so small that the source may actually have to point directly at the direction of the Earth.


Sgr A* at 86 GHz: simulation (tl), added effects of scattering (tr), scattered image from observations (br), unscattered image, after removing the effects of scattering in the line of sight (bl).

S. Issaoun, M. Mościbrodzka, Radboud University/ M. D. Johnson, CfA


The Global Millimeter VLBI Array (GMVA), with ALMA added

S. Issaoun, Radboud University/ D. Pesce, CfA

Observing at a frequency of 86 GHz with the technique of Very Long Baseline Interferometry (VLBI), which combines many telescopes to form a virtual telescope the size of the Earth, the team succeeded in mapping out the exact properties of the light scattering blocking our view of Sgr A*. The removal of most of the scattering effects has produced a first image of the surroundings of the black hole.

The high quality of the unscattered image has allowed the team to constrain theoretical models for the gas around Sgr A*. The bulk of the radio emission is coming from a mere 300 milllionth of a degree, and the source has a symmetrical morphology.

“This may indicate that the radio emission is produced in a disk of infalling gas rather than by a radio jet,” explains Sara Issaoun, graduate student at the Radboud University Nijmegen in the Netherlands, who leads the work and has tested several computer models against the data.

“However, that would make Sgr A* an exception compared to other radio emitting black holes. The alternative could be that the radio jet is pointing almost at us”.

The German astronomer Heino Falcke, Professor of Radio Astronomy at Radboud University and PhD supervisor of Issaoun, calls this statement very unusual, but he also no longer rules it out.

Last year, Falcke would have considered this a contrived model, but recently the GRAVITY team came to a similar conclusion using ESO’s Very Large Telescope Interferometer of optical telescopes and an independent technique.

“Maybe this is true after all”, concludes Falcke, “and we are looking at this beast from a very special vantage point.”

Supermassive black holes are common in the centers of galaxies and may generate the most energetic phenomena in the known universe. It is believed that, around these black holes, matter falls in a rotating disk and part of this matter is expelled in opposite directions along two narrow beams, called jets, at speeds close to the speed of light, which typically produces a lot of radio light.

“Whether the radio emission seen from SgrA* originates from a symmetrical underlying structure, or is intrinsically asymmetric is a matter of intense discussion”, explains Thomas Krichbaum, member of the team.

Sgr A* is the nearest supermassive black hole and 'weighs' about 4 million solar masses. Its apparent size on the sky is less than a 100 millionth degree, which corresponds to the size of a tennis ball on the moon as seen from the Earth. To measure this, the technique of VLBI is required. The resolution achieved with VLBI is further increased by the observation frequency.

The highest frequency to date for VLBI is 230 GHz. “The first observations of Sgr A* at 86 GHz date from 26 years ago, led by Thomas Krichbaum at our Institute, with only a handful of telescopes. Over the years, the quality of the data and imaging capabilities has improved steadily as more telescopes join.”, says J. Anton Zensus, director at the Max Planck Institute for Radio Astronomy and head of its Radio Astronomy/VLBI division.

The findings of Issaoun and her international team including scientists from two research departments (Kramer & Zensus) at MPIfR describe the first observations at 86 GHz in which ALMA also participated, by far the most sensitive telescope at this frequency. ALMA became part of the Global Millimeter VLBI Array (GMVA), which is operated by the Max Planck Institute for Radio Astronomy, in April 2017. The participation of ALMA, made possible by the ALMA Phasing Project effort, has been decisive for the success of this project.

The participation of ALMA in mm-VLBI is important because of its sensitivity and its location in the southern hemisphere. In addition to ALMA, twelve radio telescopes in North America and Europe also participated in the network. The resolution achieved was twice as large as in previous observations at this frequency and produced the first image of Sgr A* that is considerably reduced in interstellar scattering (an effect caused by density irregularities in the ionized material along the line of sight between Sgr A* and the Earth)

To remove the scattering and obtain the image, the team used a technique developed by Michael Johnson of the Harvard-Smithsonian Center for Astrophysics (CfA). "Even though scattering blurs and distorts the image of Sgr A*, the incredible resolution of these observations allowed us to pin down the exact properties of the scattering,” says Johnson. “We could then remove most of the effects from scattering and begin to see what things look like near the black hole. The great news is that these observations show that scattering will not prevent the Event Horizon Telescope from seeing a black hole shadow at 230 GHz, if there's one to be seen."

Future studies at different wavelengths will provide complementary information and further observational constraints for this source, which holds the key to a better understanding of black holes, the most exotic objects in the known universe.


The data were correlated at the Max Planck Institute for Radio Astronomy (MPIfR), which also operates the Global Millimeter-VLBI Array (GMVA). Data analysis software was developed at the MIT Haystack Observatory and the Smithsonian Astrophysical Observatory.

Several members of the team worked in this project as part of the European Research Council funded BlackHoleCam (BHC) team.

The research team is also part of the Event Horizon Telescope (EHT) consortium, an international partnership of thirteen institutes from ten countries: Germany, the Netherlands, France & Spain (via IRAM), USA, Mexico, Japan, Taiwan, Canada and China (via EAO).

The participation of the Atacama Large Millimeter/submillimeter Array (ALMA) through the ALMA Phasing Project has been decisive for the success of this project.

The GMVA is partially supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 730562.

The research gteam comprises S. Issaoun, M. D. Johnson, L. Blackburn, C. D. Brinkerink, M. Mościbrodzka, A. Chael, C. Goddi, I. Martí-Vidal, J. Wagner, S. S. Doeleman, H. Falcke, T. P. Krichbaum, K. Akiyama, U. Bach, K. L. Bouman, G. C. Bower, A. Broderick, I. Cho, G. Crew, J. Dexter, V. Fish, R. Gold, J. L. Gómez, K. Hada, A. Hernández-Gómez, M. Janßen, M. Kino, M. Kramer, L. Loinard, R.-S. Lu, S. Markoff, D. P. Marrone, L. D. Matthews, J. M. Moran, C. Müller, F. Roelofs, E. Ros, H. Rottmann, S. Sánchez, R. P. J. Tilanus, P. de Vicente, M. Wielgus, J. A. Zensus, und G.-Y. Zhao.

Wissenschaftliche Ansprechpartner:

Dr. Thomas Krichbaum,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-295
E-mail: tkrichbaum@mpifr-bonn.mpg.de

Prof. Dr. Eduardo Ros,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-125
E-mail: ros@mpifr-bonn.mpg.de

Originalpublikation:

Sara Issaoun et al., The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA
2019, The Astrophysical Journal 871, 30 (https://doi.org/10.3847/1538-4357/aaf732).

Arxiv link: http://arxiv.org/abs/1901.06226

Weitere Informationen:

https://www.mpifr-bonn.mpg.de/pressreleases/2019/1

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Further reports about: ALMA GHz Galaxy Max-Planck-Institut Radioastronomie Telescopes VLBI black hole black holes radio emission

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>