Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laserphysics: At the pulse of a light wave

13.01.2020

Physicists in the Laboratory for Attosecond Physics at Ludwig-Maximilians-Universitaet (LMU) in Munich and at the Max Planck Institute for Quantum Optics (MPQ) have developed a novel type of detector that enables the oscillation profile of light waves to be precisely determined.

Light is hard to get a hold on. Light waves propagate with a velocity of almost 300,000 km per second, and the wavefront oscillates several hundred trillion times in that same interval.


How a novel type of detector enables the oscillation profile of light waves to be precisely determined.

Picture: Philipp Rosenberger

In the case of visible light, the physical distance between successive peaks of the light wave is less than 1 micrometer, and peaks are separated in time by less than 3 millionths of a billionth of a second (<3 femtoseconds). To work with light, one must control it - and that requires precise knowledge of its behaviour.

It may even be necessary to know the exact position of the crests or valleys of the light wave at a given instant. Researchers based at the Laboratory for Attosecond Physics (LAP) (at the LMU Munich and the Max Planck Institute for Quantum Optics) are now in a position to measure the exact location of such peaks within single ultrashort pulses of infrared light with the aid of a newly developed detector.

Such pulses, which encompass only a few oscillations of the wave, can be used to investigate the behaviour of molecules and their constituent atoms, and the new detector is a very valuable tool in this context. Ultrashort laser pulses allow scientists to study dynamic processes at molecular and even subatomic levels.

Using trains of these pulses, it is possible first to excite the target particles and then to film their responses in real time. In intense light fields, however, it is crucial to know the precise waveform of the pulses.

Since the peak of the oscillating (carrier) light field and that of the pulse envelope can shift with respect to each other between different laser pulses, it is important to know the precise waveform of each pulse.

The team at LAP, which was led by Dr. Boris Bergues and Professor Matthias Kling, head of the Ultrafast Imaging and Nanophotonics Group, has now made a decisive breakthrough in the characterization of light waves.

Their new detector allows them to determine the 'phase', i.e. the precise positions of the peaks of the few oscillation cycles within each and every pulse, at repetition rates of 10,000 pulses per second.

To do so, the group generated circularly polarized laser pulses in which the orientation of the propagating optical field rotates like a clock hand, and then focused the rotating pulse in ambient air.

The interaction between the pulse and molecules in the air results in a short burst of electric current, whose direction depends on the position of the peak of the light wave. By analyzing the exact direction of the current pulse, the researchers were able to retrieve the phase of the „carrier-envelope offset", and thus reconstruct the form of the light wave.

Unlike the method conventionally employed for phase determination, which requires the use of a complex vacuum apparatus, the new technique works in ambient air and the measurements require very few extra components. „The simplicity of the setup is likely to ensure that it will become a standard tool in laser technology", explains Matthias Kling.

„We believe that this technique can also be applied to lasers with much higher repetition rates and in different spectral regions," says Boris Bergues. „Our methodology is of particular interest in the context of the characterization of extremely short laser pulses with high repetition rates, such as those generated at Europe's Extreme Light Infrastructure (ELI)," adds Prof. Matthias Kling.

When applied to the latest sources of ultrashort laser pulses, this new method of waveform analysis could pave the way to technological breakthroughs, as well as permitting new insights into the behaviour of elementary particles 'in the fast lane'.

Media Contact

Dr. Kathrin Bilgeri
presse@lmu.de
49-892-180-3423

http://www.uni-muenchen.de 

Dr. Kathrin Bilgeri | EurekAlert!
Further information:
https://www.en.uni-muenchen.de/news/newsarchiv/2020/kling_lightwave.html
http://dx.doi.org/10.1364/OPTICA.7.000035

More articles from Physics and Astronomy:

nachricht Junior scientists at the University of Rostock invent a funnel for light
27.03.2020 | Universität Rostock

nachricht Ultrafast and broadband perovskite photodetectors for large-dynamic-range imaging
23.03.2020 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>