Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser and sensor research to be advanced by new inquiries into plasmonic-photonic crystals

12.08.2019

A paper by Kazan Federal University appeared in Plasmonics

A group of researchers led by Professor Myakzyum Salakhov has been working on the problem of optical states in plasmonic-photonic crystals (PPCs). The group mostly consists of young scientists, some of whom started their participation in the project during their student years.


Schemes of PPC with equal effective refractive index and structure period. a 1D PPC and b 3D opal-like PPC

Credit: Kazan Federal University

First Category Engineer Artyom Koryukin comments that the research was dedicated to modelling light transmission throughout photonic crystals with a continuous gold layer on their surface. Photonic crystals don't pass a certain wavelength (color) of light.

This is called the photonic bandgap - the range of light wavelength where propagation through a crystal is difficult. PPCs, on the contrary, allow the passing of light of a certain wavelength in this photonic bandgap. The problem of three-dimensional opal-like PPCs (OLPPCs), however, is that they don't admit light of certain wavelengths.

In this work, conditions are defined for the passing of a beam of light with the wavelength of the photonic bandgap and certain polarization through an OLPPC. To achieve this goal, different versions of PPCs were modelled.

The main conditions to pass such a beam are both the continuity of the gold layer with thickness of about 40 nm and the use of light with polarization. Transmittance of light across a PPC is accompanied by excitations of the optical Tamm states. One- dimensional PPC has a light transmission pass bands inside the photonic bandgap in both polarizations.

Three-dimensional PPCs do not have light transmission pass bands inside the photonic bandgap because of a non-continuous gold layer (shaped like separate nano-caps or nano-crescents on the surface of a PPC). So the used OLPPCs have this unique feature - they have a light transmission pass band inside the photonic bandgap with certain polarization due to the excitation of the hybrid mode of the optical states.

OLPPCs with the hybrid mode of the optical states can be used in high-polarization-sensitive sensors. "We assume that the hybrid mode can be useful for improving the control of light in PPCs. New types of resonators based on OLPPCs can be used for the strong interaction of light and matter," adds Mr. Koryukin.

The group is planning to create a theoretical description of the model of such processes. Additionally, they want to find effective applications for OLPPCs, such as strong light-matter interactions with a single photon source.

###

NB: This paper was first made available online in November 2018 with a print versions following in August 2019.

Yury Nurmeev | European Geosciences Union
Further information:
https://kpfu.ru/eng/news-eng/opal-like-plasmonic-photonic-crystals.html
http://dx.doi.org/10.1007/s11468-018-0880-6

More articles from Physics and Astronomy:

nachricht Supporting structures of wind turbines contribute to wind farm blockage effect
13.12.2019 | American Institute of Physics

nachricht Chinese team makes nanoscopy breakthrough
13.12.2019 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>