Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State Physicists Among Teams Preparing for New Energy Department Supercomputer

02.10.2014

A team of Iowa State University nuclear physicists is preparing to scale up its computer codes for Cori, the next-generation supercomputer being developed by the National Energy Research Scientific Computing Center.

Iowa State’s Pieter Maris and James Vary want to use the supercomputer to study the basic physics of the burning sun and exploding stars. Those studies could one day lead to safer, more efficient forms of nuclear power.


Photo by Bob Elbert/Iowa State University

Iowa State University's Pieter Maris, left, and James Vary will get a head start on scaling up their computer codes for the Energy Department's next-generation supercomputer.

“We’ll work with a select group of top computer scientists and applied mathematicians to co-develop new math algorithms and new schemes in order to get the best science out of this new supercomputing architecture,” said Vary, an Iowa State professor of physics and astronomy.

The $70 million supercomputer is expected to go online in 2016. It’s named after Gerty Cori, the first American woman to win a Nobel Prize in science. And it’s being developed by the National Energy Research Scientific Computing Center based at Lawrence Berkeley National Laboratory in Berkeley, Calif. The center is the primary high-performance computing center for scientific research sponsored by the U.S. Department of Energy’s Office of Science.

Cori is designed to be extremely energy efficient, lowering one of the barriers to developing supercomputers at the exascale – machines capable of a quintillion calculations per second.

Research teams across the country recently competed for a head start on scaling up their codes for Cori. The 20 winners will now work with staff from the computing center and with Cori’s developers from Cray Inc. and Intel Corp.

Those research teams “will be doing the ‘heavy lifting’ during the project and will help us ensure that the workload is ready when Cori is deployed,” Harvey Wasserman of the computing center said in a statement. “This exciting machine architecture is now being followed by exciting science in the national interest.”

The Iowa State research will be led by Maris, a research associate professor of physics and astronomy. He and Vary have collaborated on other projects and have won supercomputing time to study the structure and reactions of rare and exotic nuclei.

They’ll use Cori to study two classes of nuclear states – the weakly bound states and the resonant states – in the nuclei of various isotopes of light elements such as hydrogen, helium, lithium and beryllium. Isotopes of the elements contain varying numbers of neutrons and often have very short lifetimes yet play critical roles in nuclear fusion, a valuable energy source for the future.

Helium-4, for example, is stable and has two protons and two neutrons. But the isotope helium-6 has two extra neutrons and quickly decays.

Those neutrons can be weakly bound to the nucleus or, in a resonant state, the extra neutrons come and go, forming a kind of cloud around the nucleus.

So why do we need to understand those isotopes and their reactions? And why would the energy department include a study of them in its latest supercomputer project?

First, Vary and Maris have already developed supercomputer software (called “Many Fermion Dynamics – nuclear physics”) to study isotopes, their structures and their reactions, studies that are very difficult and expensive to do in a laboratory.

And second, “We’re seeking to understand how the sun burns and how stars explode,” Vary said. “We want to understand how these astronomical environments tick.”

That, he said, could lead to a much better understanding of fusion and fission energy.

“The value of precise information about how fission works is the ability to design better reactors, reactors with less waste and more safety,” Vary said. “We need the basic science to predict what’s unknown. And that can help the fission and fusion energy industries.”

Contact Information

James Vary, Physics and Astronomy, 515-294-8894, jvary@iastate.edu 

James Vary | newswise
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>