Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State Physicists Among Teams Preparing for New Energy Department Supercomputer

02.10.2014

A team of Iowa State University nuclear physicists is preparing to scale up its computer codes for Cori, the next-generation supercomputer being developed by the National Energy Research Scientific Computing Center.

Iowa State’s Pieter Maris and James Vary want to use the supercomputer to study the basic physics of the burning sun and exploding stars. Those studies could one day lead to safer, more efficient forms of nuclear power.


Photo by Bob Elbert/Iowa State University

Iowa State University's Pieter Maris, left, and James Vary will get a head start on scaling up their computer codes for the Energy Department's next-generation supercomputer.

“We’ll work with a select group of top computer scientists and applied mathematicians to co-develop new math algorithms and new schemes in order to get the best science out of this new supercomputing architecture,” said Vary, an Iowa State professor of physics and astronomy.

The $70 million supercomputer is expected to go online in 2016. It’s named after Gerty Cori, the first American woman to win a Nobel Prize in science. And it’s being developed by the National Energy Research Scientific Computing Center based at Lawrence Berkeley National Laboratory in Berkeley, Calif. The center is the primary high-performance computing center for scientific research sponsored by the U.S. Department of Energy’s Office of Science.

Cori is designed to be extremely energy efficient, lowering one of the barriers to developing supercomputers at the exascale – machines capable of a quintillion calculations per second.

Research teams across the country recently competed for a head start on scaling up their codes for Cori. The 20 winners will now work with staff from the computing center and with Cori’s developers from Cray Inc. and Intel Corp.

Those research teams “will be doing the ‘heavy lifting’ during the project and will help us ensure that the workload is ready when Cori is deployed,” Harvey Wasserman of the computing center said in a statement. “This exciting machine architecture is now being followed by exciting science in the national interest.”

The Iowa State research will be led by Maris, a research associate professor of physics and astronomy. He and Vary have collaborated on other projects and have won supercomputing time to study the structure and reactions of rare and exotic nuclei.

They’ll use Cori to study two classes of nuclear states – the weakly bound states and the resonant states – in the nuclei of various isotopes of light elements such as hydrogen, helium, lithium and beryllium. Isotopes of the elements contain varying numbers of neutrons and often have very short lifetimes yet play critical roles in nuclear fusion, a valuable energy source for the future.

Helium-4, for example, is stable and has two protons and two neutrons. But the isotope helium-6 has two extra neutrons and quickly decays.

Those neutrons can be weakly bound to the nucleus or, in a resonant state, the extra neutrons come and go, forming a kind of cloud around the nucleus.

So why do we need to understand those isotopes and their reactions? And why would the energy department include a study of them in its latest supercomputer project?

First, Vary and Maris have already developed supercomputer software (called “Many Fermion Dynamics – nuclear physics”) to study isotopes, their structures and their reactions, studies that are very difficult and expensive to do in a laboratory.

And second, “We’re seeking to understand how the sun burns and how stars explode,” Vary said. “We want to understand how these astronomical environments tick.”

That, he said, could lead to a much better understanding of fusion and fission energy.

“The value of precise information about how fission works is the ability to design better reactors, reactors with less waste and more safety,” Vary said. “We need the basic science to predict what’s unknown. And that can help the fission and fusion energy industries.”

Contact Information

James Vary, Physics and Astronomy, 515-294-8894, jvary@iastate.edu 

James Vary | newswise
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Collision of individual atoms leads to twofold change of angular momentum
23.01.2019 | Technische Universität Kaiserslautern

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Graphene and related materials safety: human health and the environment

23.01.2019 | Materials Sciences

Blood test shows promise for early detection of severe lung-transplant rejection

23.01.2019 | Life Sciences

Evolution of signaling molecules opens door to new sepsis therapy approaches

23.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>