Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

18.11.2019

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely mechanism - jets of magnetized plasma known as spicules that spurt like geysers from the Sun's upper atmosphere into the corona.


A multi-layered view of solar spicules: (from top to bottom) observations of the corona from NASA's Solar Dynamics Observatory (SDO), followed by images from NJIT's Big Bear Solar Observatory of the chromosphere, the photosphere and associated magnetic fields. The background is an image of the full solar disk from the NASA satellite.

Credit: T. Samanta, H. Tian, V. Yurchyshyn, H. Peter, W. Cao, A. Sterling, R. Erdélyi, K. Ahn, S. Feng, D. Utz, D. Banerjee, Y. Chen.)

In a paper published in the journal Science, the team describes key features of jet-like spicules that are in solar terms small-scale plasma structures, between 200 and 500 kilometers wide, that erupt continuously across the Sun's expanse.

The researchers also, for the first time, show where and how the jets are generated and the paths they travel, at speeds of around 100 kilometers per second in some cases, into the corona.

"Unprecedented high-resolution observations from BBSO's Goode Solar Telescope clearly show that when magnetic fields with opposite polarities reconnect in the Sun's lower atmosphere these jets of plasma are powerfully ejected," said solar physicist Wenda Cao, BBSO's director and an author of the paper.

He added, "This is the first time we've seen direct evidence of how spicules are generated. We have tracked these dynamic features in the H-alpha spectral line down to their foot points, measured the magnetic fields at their foot point, captured the migration of the emerging magnetic elements and verified their interaction with existing magnetic fields of the opposite polarity."

Images captured in the extreme ultraviolet (EUV) spectrum by NASA's Solar Dynamics Observatory spacecraft were used to track the transportation of energy in the corona. These observations showed that it is also common for spicules to be heated to typical coronal temperatures.

Invisible to the human eye except when it appears briefly as a fiery halo of plasma during a solar eclipse, the corona remains a puzzle even to scientists who study it closely. Beginning 1,300 miles from the star's surface and extending millions more in every direction, it is more than a hundred times hotter than lower layers much closer to the fusion reactor at the Sun's core.

Solving what astrophysicists call one of the greatest challenges for solar modeling - determining the physical mechanisms that heat the upper atmosphere - requires high-resolution images that were not available until BBSO's 1.6-meter telescope, the largest operating solar telescope in the world, began capturing images a decade ago.

Scientists at Big Bear have also captured the first high-resolution images, for example, of magnetic fields and plasma flows originating deep below the Sun's surface, tracing the evolution of sunspots and magnetic flux ropes through the chromosphere before their dramatic appearance in the corona as flaring loops.

Cao says it took an international team with diverse expertise and equipment located on Earth and in space to delve this deeply into the Sun's fundamental physics.

Cao developed the scientific instruments on Big Bear's telescope and oversaw their operation, while NJIT's Vasyl Yurchyshyn generated the observations, processed the data and advised on its use, and NJIT's Kwangsu Ahn processed the vector magnetic fields data for scientific usage. Tanmoy Samanta and Hui Tian from Peking University in China defined the novel discoveries and wrote the manuscript; they are its first authors.

###

Scientists from the Max Planck Institute for Solar System Research in Germany, NASA's Marshall Space Flight Center, the University of Sheffield in the U.K., Eötvös University in Hungary, Kunming University of Science and Technology in China, the University of Graz in Austria and Indian Institute of Astrophysics all played roles.

About New Jersey Institute of Technology:

One of only 32 polytechnic universities in the United States, New Jersey Institute of Technology (NJIT) prepares students to become leaders in the technology-dependent economy of the 21st century. NJIT's multidisciplinary curriculum and computing-intensive approach to education provide technological proficiency, business acumen and leadership skills. NJIT is rated an "R1" research university by the Carnegie Classification®, which indicates the highest level of research activity. NJIT conducts approximately $170 million in research activity each year and has a $2.8 billion annual economic impact on the State of New Jersey. NJIT is ranked #1 nationally by Forbes for the upward economic mobility of its lowest-income students and is ranked 53rd out of more than 4,000 colleges and universities for the mid-career earnings of graduates, according to PayScale.com. NJIT also is ranked by U.S. News & World Report as one of the top 100 national universities.

Media Contact

Tanya Klein
klein@njit.edu
973-596-3433

 @njit

http://www.njit.edu 

Tanya Klein | EurekAlert!
Further information:
https://news.njit.edu/images-njits-big-bear-solar-observatory-peel-away-layers-solar-mystery
http://dx.doi.org/10.1126/science.aaw2796

More articles from Physics and Astronomy:

nachricht Simple experiment explains magnetic resonance
09.12.2019 | University of California - Riverside

nachricht Electronic map reveals 'rules of the road' in superconductor
09.12.2019 | Rice University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>