Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

18.11.2019

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely mechanism - jets of magnetized plasma known as spicules that spurt like geysers from the Sun's upper atmosphere into the corona.


A multi-layered view of solar spicules: (from top to bottom) observations of the corona from NASA's Solar Dynamics Observatory (SDO), followed by images from NJIT's Big Bear Solar Observatory of the chromosphere, the photosphere and associated magnetic fields. The background is an image of the full solar disk from the NASA satellite.

Credit: T. Samanta, H. Tian, V. Yurchyshyn, H. Peter, W. Cao, A. Sterling, R. Erdélyi, K. Ahn, S. Feng, D. Utz, D. Banerjee, Y. Chen.)

In a paper published in the journal Science, the team describes key features of jet-like spicules that are in solar terms small-scale plasma structures, between 200 and 500 kilometers wide, that erupt continuously across the Sun's expanse.

The researchers also, for the first time, show where and how the jets are generated and the paths they travel, at speeds of around 100 kilometers per second in some cases, into the corona.

"Unprecedented high-resolution observations from BBSO's Goode Solar Telescope clearly show that when magnetic fields with opposite polarities reconnect in the Sun's lower atmosphere these jets of plasma are powerfully ejected," said solar physicist Wenda Cao, BBSO's director and an author of the paper.

He added, "This is the first time we've seen direct evidence of how spicules are generated. We have tracked these dynamic features in the H-alpha spectral line down to their foot points, measured the magnetic fields at their foot point, captured the migration of the emerging magnetic elements and verified their interaction with existing magnetic fields of the opposite polarity."

Images captured in the extreme ultraviolet (EUV) spectrum by NASA's Solar Dynamics Observatory spacecraft were used to track the transportation of energy in the corona. These observations showed that it is also common for spicules to be heated to typical coronal temperatures.

Invisible to the human eye except when it appears briefly as a fiery halo of plasma during a solar eclipse, the corona remains a puzzle even to scientists who study it closely. Beginning 1,300 miles from the star's surface and extending millions more in every direction, it is more than a hundred times hotter than lower layers much closer to the fusion reactor at the Sun's core.

Solving what astrophysicists call one of the greatest challenges for solar modeling - determining the physical mechanisms that heat the upper atmosphere - requires high-resolution images that were not available until BBSO's 1.6-meter telescope, the largest operating solar telescope in the world, began capturing images a decade ago.

Scientists at Big Bear have also captured the first high-resolution images, for example, of magnetic fields and plasma flows originating deep below the Sun's surface, tracing the evolution of sunspots and magnetic flux ropes through the chromosphere before their dramatic appearance in the corona as flaring loops.

Cao says it took an international team with diverse expertise and equipment located on Earth and in space to delve this deeply into the Sun's fundamental physics.

Cao developed the scientific instruments on Big Bear's telescope and oversaw their operation, while NJIT's Vasyl Yurchyshyn generated the observations, processed the data and advised on its use, and NJIT's Kwangsu Ahn processed the vector magnetic fields data for scientific usage. Tanmoy Samanta and Hui Tian from Peking University in China defined the novel discoveries and wrote the manuscript; they are its first authors.

###

Scientists from the Max Planck Institute for Solar System Research in Germany, NASA's Marshall Space Flight Center, the University of Sheffield in the U.K., Eötvös University in Hungary, Kunming University of Science and Technology in China, the University of Graz in Austria and Indian Institute of Astrophysics all played roles.

About New Jersey Institute of Technology:

One of only 32 polytechnic universities in the United States, New Jersey Institute of Technology (NJIT) prepares students to become leaders in the technology-dependent economy of the 21st century. NJIT's multidisciplinary curriculum and computing-intensive approach to education provide technological proficiency, business acumen and leadership skills. NJIT is rated an "R1" research university by the Carnegie Classification®, which indicates the highest level of research activity. NJIT conducts approximately $170 million in research activity each year and has a $2.8 billion annual economic impact on the State of New Jersey. NJIT is ranked #1 nationally by Forbes for the upward economic mobility of its lowest-income students and is ranked 53rd out of more than 4,000 colleges and universities for the mid-career earnings of graduates, according to PayScale.com. NJIT also is ranked by U.S. News & World Report as one of the top 100 national universities.

Media Contact

Tanya Klein
klein@njit.edu
973-596-3433

 @njit

http://www.njit.edu 

Tanya Klein | EurekAlert!
Further information:
https://news.njit.edu/images-njits-big-bear-solar-observatory-peel-away-layers-solar-mystery
http://dx.doi.org/10.1126/science.aaw2796

More articles from Physics and Astronomy:

nachricht Explained: Why water droplets 'bounce off the walls'
27.02.2020 | University of Warwick

nachricht Scientists 'film' a quantum measurement
26.02.2020 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>