Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble sees the brightest quasar in the early Universe

10.01.2019

The NASA/ESA Hubble Space Telescope has discovered the brightest quasar ever seen in the early Universe. After 20 years of searching, astronomers have identified the ancient quasar with the help of strong gravitational lensing. This unique object provides an insight into the birth of galaxies when the Universe was less than a billion years old.

Astronomers using data from the NASA/ESA Hubble Space Telescope have discovered the brightest quasar ever seen in the early Universe -- the light received from the object started its journey when the Universe was only about a billion years old.


This artist's impression shows how J043947.08+163415.7, a very distant quasar powered by a supermassive black hole, may look close up. This object is by far the brightest quasar yet discovered in the early Universe.

Credit: ESA/Hubble, NASA, M. Kornmesser

Quasars are the extremely bright nuclei of active galaxies. The powerful glow of a quasar is created by a supermassive black hole which is surrounded by an accretion disc. Gas falling toward the black hole releases incredible amounts of energy, which can be observed over all wavelengths.

The newly discovered quasar, catalogued as J043947.08+163415.7 [1], is no exception to this; its brightness is equivalent to about 600 trillion Suns and the supermassive black hole powering it is several hundred million times as massive as our Sun. [2]

"That's something we have been looking for for a long time," said lead author Xiaohui Fan (University of Arizona, USA). "We don't expect to find many quasars brighter than that in the whole observable Universe!"

Despite its brightness Hubble was able to spot it only because its appearance was strongly affected by strong gravitational lensing. A dim galaxy is located right between the quasar and Earth, bending the light from the quasar and making it appear three times as large and 50 times as bright as it would be without the effect of gravitational lensing. Even still, the lens and the lensed quasar are extremely compact and unresolved in images from optical ground-based telescopes. Only Hubble's sharp vision allowed it to resolve the system.

The data show not only that the supermassive black hole is accreting matter at an extremely high rate but also that the quasar may be producing up to 10 000 stars per year [3]. "Its properties and its distance make it a prime candidate to investigate the evolution of distant quasars and the role supermassive black holes in their centres had on star formation," explains co-author Fabian Walter (Max Planck Institute for Astronomy, Germany), illustrating why this discovery is so important.

Quasars similar to J043947.08+163415.7 existed during the period of reionisation of the young Universe, when radiation from young galaxies and quasars reheated the obscuring hydrogen that had cooled off just 400 000 years after the Big Bang; the Universe reverted from being neutral to once again being an ionised plasma. However, it is still not known for certain which objects provided the reionising photons. Energetic objects such as this newly discovered quasar could help to solve this mystery.

For that reason the team is gathering as much data on J043947.08+163415.7 as possible. Currently they are analysing a detailed 20-hour spectrum from the European Southern Observatory's Very Large Telescope, which will allow them to identify the chemical composition and temperatures of intergalactic gas in the early Universe. The team is also using the Atacama Large Millimeter/submillimeter Array, and hopes to also observe the quasar with the upcoming NASA/ESA/CSA James Webb Space Telescope. With these telescopes they will be able to look in the vicinity of the supermassive black hole and directly measure the influence of its gravity on the surrounding gas and star formation.

###

Notes

[1] J043947.08+163415.7 was selected on the basis of its colour by combining photometric data from the United Kingdom Infra-Red Telescope Hemisphere Survey, the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1) at optical wavelengths, and the Wide-field Infrared Survey Explorer archive in the mid-infrared. Follow-up spectroscopic observations were conducted with the Multi-Mirror Telescope, the Gemini Observatory and the Keck Observatory.

[2] The brightness of the quasar includes the magnification factor of 50. Without the magnification through gravitational lensing the luminosity of the quasar is equivalent to about 11 trillion Suns.

[3] Because of the boosting effect of gravitational lensing, the actual rate of star formation could be much lower. By comparison, the Milky Way produces approximately one new star every year.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The results were presented at the meeting of the 223rd meeting of the American Astronomical Society and will be published in the Astrophysical Journal Letters.

The international team of astronomers in this study consists of Xiaohui Fan (University of Arizona, USA), Feige Wang (University of California, USA), Jinyi Yang (University of Arizona, USA), Charles R. Keeton (Rutgers University, USA), Minghao Yue (University of Arizona, USA), Ann Zabludoff (University of Arizona, USA), Fuyan Bian (ESO, Chile), Marco Bonaglia (Arcetri Observatory, Italy), Iskren Y. Georgiev (Max Planck Institute for Astronomy, Germany), Joseph F. Hennawi (University of California, USA), Jiangtao Li (University of Michigan, USA), Jiangtao Li (University of Michigan, USA), Ian D. McGreer (University of Arizona, USA), Rohan Naidu (Center for Astrophysics, USA), Fabio Pacucci (Yale University, USA), Sebastian Rabien (Max Planck Institute for Extraterrestrial Physics, Germany), David Thompson (Large Binocular Telescope Observatory), Bram Venemans (Max Planck Institute for Astronomy, Germany), Fabian Walter (Max Planck Institute for Astronomy, Germany), Ran Wang (Peking University, China), Xue-Bing Wu (Peking University, China).

Image credit: NASA, ESA, X. Fan et al.

Links

Contacts

Xiaohui Fan
University of Arizona
Tuscon, USA
Tel: +01 520 626 7558
Cell: 001 520 360 0956
Email: fan@as.arizona.edu

Fabian Walter
Max Planck Institute for Astronomy
Heidelberg, Germany
Tel: +49 6221 528 225
Email: walter@mpia.de

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org

http://www.spacetelescope.org 

Mathias Jäger | EurekAlert!
Further information:
https://spacetelescope.org/news/heic1902/
https://www.eurekalert.org/multimedia/pub/189993.php?from=417194

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>