Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Pinpoints Farthest Protocluster of Galaxies Ever Seen

11.01.2012
Using NASA's Hubble Space Telescope, astronomers have uncovered a cluster of galaxies in the initial stages of development. It is the most distant such grouping ever observed in the early universe.

In a random sky survey made in near-infrared light, Hubble found five tiny galaxies clustered together 13.1 billion light-years away. They are among the brightest galaxies at that epoch and very young -- existing just 600 million years after the big bang.


The composite image taken in visible and near-infrared light, reveals the location of five tiny galaxies clustered together 13.1 billion light-years away. The circles pinpoint the galaxies. Credit: NASA, ESA, M. Trenti (University of Colorado, Boulder and Institute of Astronomy, University of Cambridge, U.K.), L. Bradley (Space Telescope Science Institute, Baltimore), and the BoRG team

Galaxy clusters are the largest structures in the universe, comprising hundreds to thousands of galaxies bound together by gravity. The developing cluster, or protocluster, is seen as it looked 13 billion years ago. Presumably, it has grown into one of today's massive galactic cities, comparable to the nearby Virgo cluster of more than 2,000 galaxies.

"These galaxies formed during the earliest stages of galaxy assembly, when galaxies had just started to cluster together," said Michele Trenti of the University of Colorado at Boulder and the Institute of Astronomy at the University of Cambridge in the United Kingdom. "The result confirms our theoretical understanding of the buildup of galaxy clusters. And, Hubble is just powerful enough to find the first examples of them at this distance."

Trenti presented the results today at the American Astronomical Society meeting in Austin, Texas. The study will be published in an upcoming issue of The Astrophysical Journal.

Most galaxies in the universe reside in groups and clusters, and astronomers have probed many mature galactic cities in detail as far as 11 billion light-years away. Finding clusters in the early phases of construction has been challenging because they are rare, dim and widely scattered across the sky.

"We need to look in many different areas because the odds of finding something this rare are very small," said Trenti, who used Hubble's sharp-eyed Wide Field Camera 3 (WFC3) to pinpoint the cluster galaxies. "The search is hit and miss. Typically, a region has nothing, but if we hit the right spot, we can find multiple galaxies."

Hubble’s observations demonstrate the progressive buildup of galaxies. They also provide further support for the hierarchical model of galaxy assembly, in which small objects accrete mass, or merge, to form bigger objects over a smooth and steady but dramatic process of collision and collection.

Because the distant, fledgling clusters are so dim, the team hunted for the systems' brightest galaxies. These galaxies act as billboards, advertising cluster construction zones. From computer simulations, the astronomers expect galaxies at early epochs to be clustered together. Because brightness correlates with mass, the most luminous galaxies pinpoint the location of developing clusters. These powerful light beacons live in deep wells of dark matter, an invisible form of matter that makes up the underlying gravitational scaffolding for construction. The team expects many fainter galaxies that were not seen in these observations to inhabit the same neighborhood.

The five bright galaxies spotted by Hubble are about one-half to one-tenth the size of our Milky Way, yet are comparable in brightness. The galaxies are bright and massive because they are being fed large amounts of gas through mergers with other galaxies. The team's simulations show that the galaxies eventually will merge and form the brightest central galaxy in the cluster, a giant elliptical similar to the Virgo Cluster's M87.

The observations are part of the Brightest of Reionizing Galaxies survey, which uses Hubble's WFC3 to search for the brightest galaxies around 13 billion years ago, when light from the first stars burned off a fog of cold hydrogen in a process called reionization.

The team estimated the distance to the newly found galaxies based on their colors, but the astronomers plan to follow up with spectroscopic observations, which measure the expansion of space. Those observations will help astronomers precisely calculate the cluster's distance and yield the velocities of the galaxies, which will show whether they are gravitationally bound to each other.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

Trent J. Perrotto
Headquarters, Washington
202-358-0321
trent.j.perrotto@nasa.gov
Donna Weaver / Ray Villard Space Telescope Science Institute, Baltimore, Md.
410-338-4493 / 410-338-4514
dweaver@stsci.eduvillard@stsci.edu

Cheryl Gundy | EurekAlert!
Further information:
http://www.nasa.gov
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht Exoplanet stepping stones
21.11.2018 | W. M. Keck Observatory

nachricht First diode for magnetic fields
21.11.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>