Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat flow through single molecules detected

19.07.2019

After several years of theorizing and experimenting, an international team of researchers including scientists at Okinawa Institute of Science and Technology Graduate University (OIST) has finally succeeded in measuring how heat passes between two gold electrodes through a single molecule. They report their findings in Nature on July 17, 2019.

Around 2000, scientists first measured how electrons flow through single molecules. Other properties, such as how molecules emit light, have also been studied. But quantifying the heat transfer, or thermal conductance, at the molecular scale remained a persistent challenge because of the high measurement resolution required.


Illustration of electrons flowing through single molecules.

Credit: OIST

To achieve this elusive goal, the international team of collaborators had to work on both an experimental and a theoretical level.

Scientists at University of Michigan developed a setup called a scanning thermal microscope, which positions a single alkane molecule between a gold-coated probe and a gold layer. The gold probe is heated and then held above a cold gold substrate in such a way that the alkane molecule forms a link between the probe tip and substrate layer. Due to the difference in temperature, heat passes from the hot gold to the cold gold through the molecule. The alkane molecules employed were synthesized by scientists at Kookmin University, South Korea.

Thermal conduction is a process most of us are familiar with, and heat can be transported in various ways. Here, the heat was carried by the vibrations of atoms in the alkane molecule, which the scanning thermal microscope could detect.

OIST's Leader of the Quantum Transport and Electronic Structure Theory Unit, Prof. Fabian Pauly, and his PhD student Jan Klöckner, were the theorists on the paper.

While each measurement takes only seconds, the microscope gathers averages over many trials to determine the thermal conductance of a single molecule.

The scientist used alkane molecules of different lengths. Previously, Pauly's group made predictions on the size of thermal conductance values for such single molecule-junctions. The predictions provided important information for the experimentalist in the study regarding the measurement resolution needed.

"Having shown that heat transport at the molecular scale is rather length-independent, we must now try to find out how we can enhance or reduce it," Pauly said. "Ultimately, what we hope to do in the future is to identify ways of controlling the flow of heat by molecular design."

The ability to regulate how much heat passes through a material requires a detailed understanding of heat flow at the molecular scale, Pauly explained. "For example, to characterize the efficiency of thermoelectric devices, which can be used to convert heat into electrical energy, the thermal conductance has to be known."

The research spans several different fields of science. The lead authors on the paper, Prof. Pramod Reddy and Prof. Edgar Meyhofer of University of Michigan, are mechanical engineers. The other corresponding authors, Prof. Sung-Yeon Jang of Kookmin University and OIST's Prof. Fabian Pauly, are a chemist and a theoretical physicist, respectively.

The experimental and theoretical tools that the international team has developed pave the way for scientists to study how heat moves at the molecular scale, and hopefully to find new ways of controlling this flow by the design of new molecular structures.

Media Contact

Tomomi Okubo
tomomi.okubo@oist.jp
098-982-3447

 @oistedu

http://www.oist.jp/ 

Tomomi Okubo | EurekAlert!

More articles from Physics and Astronomy:

nachricht Weizmann physicists image electrons flowing like water
12.12.2019 | Weizmann Institute of Science

nachricht Revealing the physics of the Sun with Parker Solar Probe
12.12.2019 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Weizmann physicists image electrons flowing like water

12.12.2019 | Physics and Astronomy

Revealing the physics of the Sun with Parker Solar Probe

12.12.2019 | Physics and Astronomy

New technique to determine protein structures may solve biomedical puzzles

12.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>