Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The great cosmic challenge

28.10.2008
Today cosmologists are challenging the world to solve a compelling statistical problem, to bring us closer to understanding the nature of dark matter and energy which makes up 95 per cent of the ‘missing’ universe.

The GRavitational lEnsing Accuracy Testing 2008 (GREAT08) PASCAL Challenge is being set by 38 scientists across 19 international institutions, with the aim of enticing other researchers to crack it by 30 April 2009.

“The GREAT08 PASCAL Challenge will help us answer the biggest question in cosmology today: what is the dark energy that seems to make up most of the universe? We realised that solving our image processing problem doesn’t require knowledge of astronomy, so we’re reaching out to attract novel approaches from other disciplines,” says Dr Sarah Bridle, UCL Physics and Astronomy, who is leading the challenge alongside Professor John Shawe-Taylor, Director of the UCL Centre for Computational Statistics and Machine Learning.

Twenty per cent of our universe seems to be made of dark matter, an unknown substance that is fundamentally different to the material making up our known world. Seventy-five per cent of the universe appears to be made of a completely mysterious substance dubbed dark energy. One possible explanation for these surprising observations is that Einstein’s law of gravity is wrong.

The method with the greatest potential to discover the nature of dark energy is gravitational lensing, in which the shapes of distant galaxies are distorted by the gravity of the intervening dark matter. “Streetlamps appear distorted by the glass in your bathroom window and you could use the distortions to learn about the varying thickness of the glass. In the same way, we can learn about the distribution of the dark matter by looking at the shapes of distant galaxies,” says Dr. Sarah Bridle. The observed galaxy images appear distorted and their shapes must be precisely disentangled from observational effects of sampling, convolution and noise. The problem being set, to measure these image distortions, involves image analysis and is ideally matched to experts in statistical inference, inverse problems and computational learning, amongst other scientific fields.

Cosmologists are gearing up for an exciting few years interpreting the results of new experiments designed to uncover the nature of dark energy, including the ground-based Dark Energy Survey (DES) in Chile and Pan-STARRS in Hawaii, and space missions by the European Space Agency (Euclid) and by NASA and the US Department of Energy (JDEM). Methods developed to solve the GREAT08 Challenge will help the analysis of this new data.

The GREAT08 Challenge contains 200 GB of simulated images, containing 30 million galaxy images. For the main competition, participants are asked to extract 5400 numbers from 170 GB of data. The competition can be accessed via the website www.great08challenge.info.

The GREAT08 Challenge Handbook will shortly be published in the journal Annals of Applied Statistics (AOAS).

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk/media/library/great08

Further reports about: GREAT08 Gravitational Lensing UCL cosmic challenge dark energy dark matter

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>