Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole Earth Telescope Trains Lens on International Cooperation

16.12.2011
Like an international relay team with telescopes, astronomers worldwide are working together to continuously watch several cooling stars for clues that may help reveal one of our galaxy’s deepest secrets: its age.

Click, click, click, observers manning over 30 major telescopes in 12 countries have been taking pictures of the target white dwarf stars every 20 seconds from sundown to sunup for the past four weeks and transmitting the images to researchers at the University of Delaware.

The UD team is coordinating the global effort -- aptly named the Whole Earth Telescope (WET) -- from a command center at Mount Cuba Astronomical Observatory in Greenville, Del.

There, for the first time, astronomers are exclusively using a software program called “Maestro,” developed by UD doctoral student James Dalessio, to automatically process the hundreds of gigabytes of images to study variations in the brightness, or temperature, of each star.

“The Whole Earth Telescope receives tens of thousands of images every day from observatories all over the world, and Maestro is saving us hours of tedious work,” says Dalessio, who has coordinated a large portion of the observing run. A native of Woodstown, N.J., Dalessio is midway through his doctoral program in the Department of Physics and Astronomy at UD. His work on the WET project is supported by the NASA-funded Delaware Space Grant Consortium.

“Just today, I have communicated with observatories in Croatia, Germany, South Africa, Mexico, Chile, Brazil, China, Taiwan, Texas, Arizona, Canary Islands, Hawaii, Poland, Hungary and Slovakia,” Dalessio notes. “It’s a huge team effort.”

Dalessio’s adviser, Judi Provencal, assistant professor of physics and astronomy at UD, organized the star watch, working with Gerard Vauclair, an astronomer from the Observatoire Midi-Pyrenées in Toulouse, France. Vauclair is in charge of HS0507+0434B, the target star for telescopes in the Northern Hemisphere, and Dalessio is the chief investigator for the primary southern target, EC04207-4748. Five secondary target white dwarfs also are being watched.

White dwarfs are “dead” stars because they have no source of energy. They are just radiating their residual heat into space like an electric stove that’s been turned off after cooking a meal, explains Provencal, who directs the Delaware Asteroseismic Research Center at UD.

“Astronomers can calculate how long it takes for a white dwarf to ‘cool off,’” Provencal notes. “We’ve looked around for the coolest white dwarf we can find, and then figured out how long it took to get to that temperature, and that is the age of the galaxy. Turns out to be between 9 and 11 billion years. Of course, we’d like to be more precise than that, so we need more observations.”

One byproduct of the study is a search for planets around white dwarfs. More than half the stars astronomers see in the sky have a planetary companion, Provencal says, but what will happen to these planets -- like Earth -- as their stars age and die out?

“If we find some planets around white dwarfs, perhaps these planets survived the death of their suns, and maybe some of our solar system planets will survive. So far, we haven’t found any,” she notes. “So maybe all of the planets will be ejected from the solar system to wander through interstellar space.”

Although most of the participating telescopes are manned, with observers in the dome, several are operated robotically. A telescope in Arizona is actually owned and remote-controlled by colleagues in South Korea, and the observer at the Tuebingen telescope in Germany can run his telescope from his living room, Provencal says.

In Chile, UD researchers were granted permission to use PROMPT, a series of robotic telescopes whose primary duty is to monitor gamma ray bursts, big explosions in the distant galaxy.

Whether aided by robotics or not, the Whole Earth Telescope has had its share of cosmic quirks and earthly challenges during its most recent campaign, but the cosmic collaboration is taking them in stride.

“We had an asteroid eclipse one of our stars, and we imaged what was either a distant weather balloon or satellite. Maybe it was just some aliens,” Dalessio says, smiling. “It’s been cloudy in a lot of places, and some telescopes have been closed due to snow. It’s all very exciting. When this run is over, I’ll probably need a good 24 hours of sleep.”

For the link to the original article, and video, visit
http://www.udel.edu/udaily/2012/dec/whole-earth-telescope-121411.html

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
01.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>