Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery by Physicists Furthers Understanding of Superconductivity

31.05.2013
Physicists at the University of Arkansas have collaborated with scientists in the United States and Asia to discover that a crucial ingredient of high-temperature superconductivity could be found in an entirely different class of materials.

“There have been more than 60,000 papers published on high-temperature superconductive material since its discovery in 1986,” said Jak Chakhalian, professor of physics at the University of Arkansas.

“Unfortunately, as of today we have zero theoretical understanding of the mechanism behind this enigmatic phenomenon. In my mind, the high-temperature superconductivity is the most important unsolved mystery of condensed matter physics.”

Superconductivity is a phenomenon that occurs in certain materials when cooled to extremely low temperatures such as negative-435 degrees Fahrenheit. High-temperature superconductivity exists at negative-396 degrees Fahrenheit. In both cases electrical resistance drops to zero and complete expulsion of magnetic fields occurs.

Superconductors have the ability to transport large electrical currents and produce high magnetic fields, which means they hold great potential for electronic devices and power transmission.

The recent finding by the University of Arkansas-led team is important to further understand superconductivity, Chakhalian said.

An article detailing the finding, “Zhang-Rice physics and anomalous copper states in A-site ordered perovskites” was published Monday, May 13, in Scientific Reports, an online journal published by the journal Nature.

Derek Meyers, a doctoral student in physics at the U of A, found that the way electrons form in superconductive material — known as the Zhang-Rice singlet state — was present in a chemical compound that is very different from conventional superconductors.

“There is now a whole different class of materials where you can search for the enigmatic superconductivity,” Chakhalian said. “This is completely new because we know that the Zhang-Rice quantum state, which used to be the hallmark of this high-temperature superconductor, could be found in totally different crystal structures. Does it have a potential to become a novel superconductor? We don’t know but it has all the right ingredients.”

Meyers was the lead researcher. Srimanta Middey, a postdoctoral research associate at the university and Benjamin A. Gray, a doctoral student, performed the theoretical calculations and analyzed the experimental data obtained at the X-ray synchrotron at Argonne National Laboratory near Chicago.

In the mid-1980s, physicists determined that all high-temperature superconductive material must contain copper and oxygen and those elements arrange two-dimensionally.

In this material the electrons combine into a unique quantum state called the Zhang-Rice singlets, Chakhalian explained.

“I can make a closed circuit out of the superconducting material, cool it down and attach a battery that starts the flow of the electrons. The current goes around the loop. Then I detach it and leave it. Hypothetically, 1 billion years later the flow of electrons is guaranteed to be exactly the same — with no losses,” he said. “But the problem is we don’t know if we are even using it right. We have no microscopic understanding of what is behind it.”

For this project, Chakhalian acquired complex oxides from the University of Texas in Austin, in close collaboration with chemists John Goodenough and J.G. Cheng. Chakhalian’s group, led by Meyers, conducted experiments on them at the Advanced Photon Source at Argonne National Laboratory.

Chackhalian holds the Charles and Clydene Scharlau Chair in the J. William Fulbright College of Arts and Sciences.

The research team also included theorists Swarnakamal Mukherjee and Tanusri Saha Dasgupta of the S. N. Bose National Centre for Basic Sciences in Calcutta, India; Goodenough and Cheng of the University of Texas (Cheng also with the University of Tokyo and Chinese Academy of Sciences) and John W. Freeland of the Advanced Photon Source at Argonne National Laboratory.

Contacts:

Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakhal@uark.edu
Derek Meyers, doctoral student, physics
J. William Fulbright College of Arts and Sciences
479-575-2506, dmeyers@uark.edu

Jak Chakhalian | Newswise
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>