Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery by Physicists Furthers Understanding of Superconductivity

31.05.2013
Physicists at the University of Arkansas have collaborated with scientists in the United States and Asia to discover that a crucial ingredient of high-temperature superconductivity could be found in an entirely different class of materials.

“There have been more than 60,000 papers published on high-temperature superconductive material since its discovery in 1986,” said Jak Chakhalian, professor of physics at the University of Arkansas.

“Unfortunately, as of today we have zero theoretical understanding of the mechanism behind this enigmatic phenomenon. In my mind, the high-temperature superconductivity is the most important unsolved mystery of condensed matter physics.”

Superconductivity is a phenomenon that occurs in certain materials when cooled to extremely low temperatures such as negative-435 degrees Fahrenheit. High-temperature superconductivity exists at negative-396 degrees Fahrenheit. In both cases electrical resistance drops to zero and complete expulsion of magnetic fields occurs.

Superconductors have the ability to transport large electrical currents and produce high magnetic fields, which means they hold great potential for electronic devices and power transmission.

The recent finding by the University of Arkansas-led team is important to further understand superconductivity, Chakhalian said.

An article detailing the finding, “Zhang-Rice physics and anomalous copper states in A-site ordered perovskites” was published Monday, May 13, in Scientific Reports, an online journal published by the journal Nature.

Derek Meyers, a doctoral student in physics at the U of A, found that the way electrons form in superconductive material — known as the Zhang-Rice singlet state — was present in a chemical compound that is very different from conventional superconductors.

“There is now a whole different class of materials where you can search for the enigmatic superconductivity,” Chakhalian said. “This is completely new because we know that the Zhang-Rice quantum state, which used to be the hallmark of this high-temperature superconductor, could be found in totally different crystal structures. Does it have a potential to become a novel superconductor? We don’t know but it has all the right ingredients.”

Meyers was the lead researcher. Srimanta Middey, a postdoctoral research associate at the university and Benjamin A. Gray, a doctoral student, performed the theoretical calculations and analyzed the experimental data obtained at the X-ray synchrotron at Argonne National Laboratory near Chicago.

In the mid-1980s, physicists determined that all high-temperature superconductive material must contain copper and oxygen and those elements arrange two-dimensionally.

In this material the electrons combine into a unique quantum state called the Zhang-Rice singlets, Chakhalian explained.

“I can make a closed circuit out of the superconducting material, cool it down and attach a battery that starts the flow of the electrons. The current goes around the loop. Then I detach it and leave it. Hypothetically, 1 billion years later the flow of electrons is guaranteed to be exactly the same — with no losses,” he said. “But the problem is we don’t know if we are even using it right. We have no microscopic understanding of what is behind it.”

For this project, Chakhalian acquired complex oxides from the University of Texas in Austin, in close collaboration with chemists John Goodenough and J.G. Cheng. Chakhalian’s group, led by Meyers, conducted experiments on them at the Advanced Photon Source at Argonne National Laboratory.

Chackhalian holds the Charles and Clydene Scharlau Chair in the J. William Fulbright College of Arts and Sciences.

The research team also included theorists Swarnakamal Mukherjee and Tanusri Saha Dasgupta of the S. N. Bose National Centre for Basic Sciences in Calcutta, India; Goodenough and Cheng of the University of Texas (Cheng also with the University of Tokyo and Chinese Academy of Sciences) and John W. Freeland of the Advanced Photon Source at Argonne National Laboratory.

Contacts:

Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakhal@uark.edu
Derek Meyers, doctoral student, physics
J. William Fulbright College of Arts and Sciences
479-575-2506, dmeyers@uark.edu

Jak Chakhalian | Newswise
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>