Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device physics: Simulating electronic smog

04.07.2013
A mathematical model that predicts the electromagnetic radiation produced by circuit boards could help to improve designs and lower costs

A research team from A*STAR and Samsung Electronics has developed a fast and accurate way to estimate the electromagnetic emissions from printed circuit boards that could help designers to ensure that devices meet regulatory standards.

Circuits that carry rapidly changing electrical currents can generate unwanted electromagnetic waves, wasting energy, causing interference with other electrical equipment, and potentially posing health risks to users. To ensure that such emissions are within acceptable limits, electronic products such as mobile phones and laptops must undergo tests for this ‘electronic smog’ before they can be marketed.

Those tests have traditionally been done in large rooms designed to capture all the electromagnetic waves emitted from the device, explains Wei-Jiang Zhao of A*STAR’s Institute of High Performance Computing, Singapore, who led the study. An alternative to this costly process involves scanning the electromagnetic field very close to the device’s circuit boards (the near field), and then calculating the resulting radiation at a distance (the far field). But those calculations can take powerful computers many hours to complete.

The mathematical model developed by Zhao and co-workers translates near-field measurements into an accurate estimate of far-field radiation in less than 10 minutes on a standard desktop computer. “Our simulation technique could help to shorten the product design cycle, save laboratory space, and reduce product development cost,” says Zhao.

The researcher’s model mathematically mimics the readings from a scan of the near-field above a printed circuit board. Their simulation relies on a series of virtual magnetic dipoles — effectively tiny, imaginary bar magnets — that collectively replicate the variations in the measured magnetic field.

The simulation runs iteratively, each time altering the magnetic dipoles so that they fit the data better. This process of ‘differential evolution’ eventually produces a solution that is a sufficiently close match to the circuit-board’s near field. The researchers then use those magnetic dipoles to simplify their calculation of the far-field radiation produced by the device.

The researchers tested their model using simulated near-field data from a thin, L-shaped metal strip laid on a small circuit board. The data contained 1,273 sample points, each 10 millimeters above the board. The model could approximate this magnetic field using just a few virtual magnetic dipoles. The match improved as they added more dipoles, until they reached very good agreement at nine dipoles — adding a tenth did not significantly improve the match. The team is now working to refine the system to make it suitable for use by the electronics industry.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Zhao, W.-J., Wang, B.-F., Liu, E.-X., Park, H. B., Park, H. H. et al. An effective and efficient approach for radiated emission prediction based on amplitude-only near-field measurements. IEEE Transactions on Electromagnetic Compatibility 54, 1186–1189 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6705
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>