Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic rays detected deep underground reveal secrets of the upper atmosphere

21.01.2009
Cosmic-rays detected half a mile underground in a disused U.S. iron-mine can be used to detect major weather events occurring 20 miles up in the Earth’s upper atmosphere, a new study has revealed.

Published in the journal Geophysical Research Letters and led by scientists from the UK’s National Centre for Atmospheric Science (NCAS) and the Science and Technology Facilities Council (STFC), this remarkable study shows how the number of high-energy cosmic-rays reaching a detector deep underground, closely matches temperature measurements in the upper atmosphere (known as the stratosphere).

For the first time, scientists have shown how this relationship can be used to identify weather events that occur very suddenly in the stratosphere during the Northern Hemisphere winter. These events can have a significant effect on the severity of winters we experience, and also on the amount of ozone over the poles - being able to identify them and understand their frequency is crucial for informing our current climate and weather-forecasting models to improve predictions.

Working in collaboration with a major U.S.-led particle physics experiment called MINOS (managed by the U.S. Department of Energy's Fermi National Accelerator Laboratory), the scientists analysed a four-year record of cosmic-ray data detected in a disused iron-mine in the U.S. state of Minnesota. What they observed was a strikingly close relationship between the cosmic-rays and stratospheric temperature - this they could understand: the cosmic-rays, known as muons are produced following the decay of other cosmic rays, known as mesons. Increasing the temperature of the atmosphere expands the atmosphere so that fewer mesons are destroyed on impact with air, leaving more to decay naturally to muons. Consequently, if temperature increases so does the number of muons detected.

What did surprise the scientists, however, were the intermittent and sudden increases observed in the levels of muons during the winter months. These jumps in the data occurred over just a few days. On investigation, they found these changes coincided with very sudden increases in the temperature of the stratosphere (by up to 40 deg C in places!). Looking more closely at supporting meteorological data, they realised they were observing a major weather event, known as a Sudden Stratospheric Warming. On average, these occur every other year and are notoriously unpredictable. This study has shown, for the first time, that cosmic-ray data can be used effectively to identify these events.

Lead scientist for the National Centre for Atmospheric Science, Dr Scott Osprey said: “Up until now we have relied on weather balloons and satellite data to provide information about these major weather events. Now we can potentially use records of cosmic-ray data dating back 50 years to give us a pretty accurate idea of what was happening to the temperature in the stratosphere over this time. Looking forward, data being collected by other large underground detectors around the world, can also be used to study this phenomenon.”

Dr Giles Barr, co-author of the study from the University of Oxford added: “It's fun sitting half a mile underground doing particle physics. It's even better to know that from down there, we can also monitor a part of the atmosphere that is otherwise quite tricky to measure”.

Interestingly, the muon cosmic-ray dataset used in this study was collected as a by-product of the MINOS experiment, which is designed to investigate properties of neutrinos, but which also measures muons originating high up in the atmosphere, as background noise in the detector. Having access to these data has led to the production of a valuable dataset of benefit to climate researchers.

Professor Jenny Thomas, deputy spokesperson for MINOS from University College London said “The question we set out to answer at MINOS is to do with the basic properties of fundamental particles called neutrinos which is a crucial ingredient in our current model of the Universe, but as is often the way, by keeping an open mind about the data collected, the science team has been able to find another, unanticipated benefit that aids our understanding of weather and climate phenomena.”

Dr Osprey commented: “This study is a great example of what can be done through international partnerships and cross-disciplinary research. One can only guess what other secrets are waiting to be revealed.”

Louisa Watts | alfa
Further information:
http://www.nerc.ac.uk
http://www.ncas.ac.uk/index.php?option=com_content&task=blogcategory&id=74&Itemid=249

More articles from Physics and Astronomy:

nachricht Broadband achromatic metalens focuses light regardless of polarization
21.01.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Lifting the veil on the black hole at the heart of our Galaxy
21.01.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>