Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coping with errors in the quantum age

06.11.2018

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least at a handful of selected tasks.


The quantum correlations between two beryllium ions (represented as blue spheres) are sequentially measured using an ancillary calcium ion (red sphere) and stabilized by feedback control through a powerful classical control system (bottom right) that features flexible in-sequence processing.

Credit: ETH Zurich / Home group

The numerous advances notwithstanding, today's quantum information processors still struggle to cope with errors, which inevitably occur in any calculation. This inability to efficiently rectify errors hinders in turn efforts towards sustained large-scale processing of quantum information.

Hence the excitement for a set of experiments in which the group of Jonathan Home at the Institute for Quantum Electronics integrated for the first time a range of elements needed for performing quantum error correction in a single experiment. These results have been published today in the journal Nature.

Making imperfection tolerable

Just like their classical counterparts, quantum computers are built from imperfect components, and they are far more sensitive to disturbances from the outside. This leads inescapably to errors as calculations are executed.

For conventional computers, there exists a well-established tool kit for detecting and correcting such errors. Quantum computers will rely even more on locating and fixing errors. This requires conceptually different approaches that take into account that information is encoded in quantum states.

In particular, reading out quantum information repeatedly without disturbing it, as is needed for detecting errors, and reacting in real time to reverse these errors pose considerable challenges.

Repeat performance

The Home group encodes quantum information in the quantum states of single ions that are strung together in a trap. Typically, these strings contain ions of only one species. But PhD students Vlad Negnevitsky and Matteo Marinelli, together with postdoc Karan Mehta and further colleagues, have now created strings in which they trapped two different species, two beryllium ions (9Be+) and one calcium ion (40Ca+). Such mixed-species strings have been produced before, but the team used them now in novel ways.

They made use of the distinctly different properties that the two species possess. In particular, in their experiments beryllium and calcium ions are manipulated and measured using very different colours of light. This opens up an avenue for working on one species without disturbing the other.

At the same time, the ETH researchers found ways to let the unlike ions interact with one another in manners that measurements on the calcium ion yield information about the quantum states of the beryllium ions, without corrupting those fragile states.

Importantly, the physicists monitored the beryllium ions repeatedly as they were subjected to imperfections and errors. The team performed 50 measurements on the same system, whereas in previous experiments (where only calcium ions were used) such repeated readout has been limited to only a few rounds.

Corrective action

Spotting errors is one thing, taking action to rectify them another. To do the latter, the researchers developed a powerful control system for repeatedly nudging the beryllium ions depending on how much they strayed away from the target state.

Bringing the ions back on track required complex information processing on the timescale of microseconds. As the system uses classical control electronics, the approach now demonstrated should be useful also for quantum-computation platforms based on information carriers other than trapped ions.

Importantly, Negnevitsky, Marinelli, Mehta and their co-workers demonstrated these techniques can also be used to stabilize states in which the two beryllium ions shared entangled quantum states, which are states that have no direct equivalent in classical physics.

Entanglement is one ingredient that endows quantum computers with unique capabilities. Moreover, these states can also be used to enhance the accuracy of precision measurements. Ingredients for error correction such as the ones now demonstrated can make these states last longer -- providing intriguing prospects not only for quantum computation but also for metrology.

Media Contact

Andreas Trabesinger
trabi@ethz.ch

 @ETH_physics

https://www.phys.ethz.ch/ 

Andreas Trabesinger | EurekAlert!
Further information:
https://www.phys.ethz.ch/news-and-events/d-phys-news/2018/11/coping-with-errors-in-the-quantum-age.html
http://dx.doi.org/10.1038/s41586-018-0668-z

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>