Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control on shape of light particles opens the way to ‘quantum internet’

15.12.2014

In the same way as we now connect computers in networks through optical signals, it could also be possible to connect future quantum computers in a ‘quantum internet’.

The optical signals would then consist of individual light particles or photons. One prerequisite for a working quantum internet is control of the shape of these photons. Researchers at Eindhoven University of Technology (TU/e) and the FOM foundation have now succeeded for the first time in getting this control within the required short time. These findings are published today in Nature Communications.

Quantum computers are the dream computers of the future. They use the unique physics of the smallest particles– those described by quantum mechanics – to perform calculations. While today’s computers use bits that can be either 0 or 1, quantum computers perform calculations with ‘qubits’, which can be both 0 and 1 at the same time. That creates an unprecedented degree of extra computing power, which gives quantum computers much greater capabilities than today’s computers.

Quantum internet

Quantum computers could in principle communicate with each other by exchanging individual photons to create a ‘quantum internet’. The shape of the photons, in other words how their energy is distributed over time, is vital for successful transmission of information. This shape must be symmetric in time, while photons that are emitted by atoms normally have an asymmetric shape. Therefore, this process requires external control in order to create a quantum internet.

Optical cavity

Researchers at TU/e and FOM have succeeded in getting the required degree of control by embedding a quantum dot – a piece of semiconductor material that can transmit photons – into a ‘photonic crystal’, thereby creating an optical cavity. Then the researchers applied a very short electrical pulse to the cavity, which influences how the quantum dot interacts with it, and how the photon is emitted. By varying the strength of this pulse, they were able to control the shape of the transmitted photons.

Within a billionth of a second

The Eindhoven researchers are the first to achieve this, thanks to the use of electrical pulses shorter than nanosecond, a billionth of a second. This is vital for use in quantum communication, as research leader Andrea Fiore of TU/e explains: “The emission of a photon only lasts for one nanosecond, so if you want to change anything you have to do it within that time. It’s like the shutter of a high-speed camera, which has to be very short if you want to capture something that changes very fast in an image. By controlling the speed at which you send a photon, you can in principle achieve very efficient exchange of photons, which is important for the future quantum internet.”

The research is financed by the FOM Foundation and Technology Foundation STW.


Full bibliographic information

Francesco Pagliano et al, Dynamically controlling the emission of single excitons in photonic crystal cavities, Nature Communications (15 December 2014)
DOI: 10.1038/ncomm6786

Notes for editors
The publication is available on request. For more information, please contact TU/e professor Andrea Fiore, research leader of this project (a.fiore@tue.nl / +31 6 30239122), or Science Information Officer Barry van der Meer (b.v.d.meer@tue.nl / +31 6 28783207).

Barry van der Meer | AlphaGalileo
Further information:
http://www.tue.nl

More articles from Physics and Astronomy:

nachricht The broken mirror: Can parity violation in molecules finally be measured?
04.06.2020 | Johannes Gutenberg-Universität Mainz

nachricht K-State study reveals asymmetry in spin directions of galaxies
03.06.2020 | Kansas State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>