Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer hackers R.I.P. -- making quantum cryptography practical

04.05.2009
Quantum cryptography, a completely secure means of communication, is much closer to being used practically as researchers from Toshiba and Cambridge University's Cavendish Laboratory have now developed high speed detectors capable of receiving information with much higher key rates, thereby able to receive more information faster.

Published as part of IOP Publishing's New Journal of Physics' Focus Issue on 'Quantum Cryptography: Theory and Practice', the journal paper, 'Practical gigahertz quantum key distribution based on avalanche photodiodes', details how quantum communication can be made possible without having to use cryogenic cooling and/or complicated optical setups, making it much more likely to become commercially viable soon.

One of the first practical applications to emerge from advances in the often baffling study of quantum mechanics, quantum cryptography has become the soon-to-be-reached gold standard in secure communications.

Quantum mechanics describes the fundamental nature of matter at the atomic level and offers very intriguing, often counter-intuitive, explanations to help us understand the building blocks that construct the world around us. Quantum cryptography uses the quantum mechanical behaviour of photons, the fundamental particles of light, to enable highly secure transmission of data beyond that achievable by classical encryption.

The photons themselves are used to distribute keys that enable access to encrypted information, such as a confidential video file that, say, a bank wishes to keep completely confidential, which can be sent along practical communication lines, made of fibre optics. Quantum indeterminacy, the quantum mechanics dictum which states that measuring an unknown quantum state will change it, means that the key information cannot be accessed by a third party without corrupting it beyond recovery and therefore making the act of hacking futile.

While other detectors can offer a key rate close to that reported in this journal paper, the present advance only relies on practical components for high speed photon detection, which has previously required either cryogenic cooling or highly technical optical setups, to make quantum key distribution much more user-friendly.

Using an attenuated (weakened) laser as a light source and a compact detector (semiconductor avalanche photodiodes), the researchers have introduced a decoy protocol for guarding against intruder attacks that would confuse with erroneous information all but the sophisticated, compact detector developed by the researchers.

As the researchers write, "With the present advances, we believe quantum key distribution is now practical for realising high band-width information-theoretically secure communication."

Governments, banks and large businesses who fear the leaking of sensitive information will, no doubt, be watching closely.

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>