Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Can we tell black holes apart?


Astrophysicists at Frankfurt, the Max Planck Institute for Radio Astronomy in Bonn, and Nijmegen, collaborating in the project BlackHoleCam, answer this question by computing the first images of feeding non-Einsteinian black holes: it is presently hard to tell them apart from standard black holes.

One of the most fundamental predictions of Einstein's theory of relativity is the existence of black holes. In spite of the recent detection of gravitational waves from binary black holes by LIGO, direct evidence using electromagnetic waves remains elusive and astronomers are looking for it with radio telescopes.

Synthetic shadow images of Sgr A* for a Kerr black hole (top row) and a non-rotating dilaton black hole (bottom row).

Fromm/Younsi/Mizuno/Rezzolla (Frankfurt)

For the first time, collaborators in the ERC funded project BlackHoleCam, including astrophysicists at Goethe University Frankfurt, Max Planck Institute for Radio Astronomy (MPIfR) Bonn, and Radboud University Nijmegen, have compared self-consistent and realistic images of the shadow of an accreting supermassive black hole – such as the black-hole candidate Sagittarius A* (Sgr A*) in the heart of our Galaxy – both in general relativity and in a different theory of gravity. The goal was to test if Einsteinian black holes can be distinguished from those in alternative theories of gravity.

Not all of the light rays (or photons) produced by matter falling onto a black hole are trapped by the event horizon, a region of spacetime from which nothing can escape. Some of these photons will reach distant observers, so that when a black hole is observed directly, a “shadow” is expected against the background sky. The size and shape of this shadow will depend on the black hole’s properties and on the theory of gravity.

Because the largest deviations from Einstein’s theory of relativity are expected very close to the event horizon, and since alternative theories of gravity make different predictions on the properties of shadow, direct observations of Sgr A* represent a very promising approach for testing gravity in the strongest regime. Making such images of the black-hole shadow is the prime goal of the international Event Horizon Telescope Collaboration (EHTC), which combines radio data from telescopes around the world.

Scientists from the BlackHoleCam Team in Europe, who are part of the EHTC, have now have gone a step further and investigated whether it is possible to distinguish between a "Kerr" black hole from Einstein’s gravity and a "dilaton" black hole, which is a possible solution of an alternative theory of gravity.

The researchers studied the evolution of matter falling into the two very different types of black holes and calculated the radiation emitted to construct the images. Furthermore, real-life physical conditions in the telescopes and interstellar medium were used to create physically realistic images. “To capture the effects of different black holes we used realistic simulations of accretion disks with near-identical initial setups. These expensive numerical simulations used state-of-the-art codes and several months on the Institute’s supercomputer LOEWE”, says Dr. Mizuno, lead author of the study.

Moreover, expected radio images obviously have a limited resolution and image fidelity. When using realistic image resolutions, the scientists found, to their surprise, that even highly non-Einsteinian black holes could disguise themselves as normal black holes.

“Our results show that there are theories of gravity in which black holes can masquerade as Einsteinian, so new techniques of analyzing EHT data may be needed to tell them apart”, remarks Luciano Rezzolla, professor at Goethe University and leader of the Frankfurt team. “While we believe general relativity is correct, as scientists we need to be open-minded. Luckily, future observations and more advanced techniques will eventually settle these doubts”, concludes Rezzolla.

“Indeed, independent information from an orbiting pulsar, which we are actively searching for, will help eliminate these ambiguities”, says Michael Kramer, director at the MPI for Radio Astronomy in Bonn. Heino Falcke (professor at Radboud University), who 20 years ago proposed using radio telescopes to image the shadow of black holes, is optimistic. “There is little doubt that the EHT will eventually obtain strong evidence of a black hole shadow. These results encourage us to refine our techniques beyond the current state of the art and thus make even sharper images in the future."

BlackHoleCam is an ERC-funded Synergy project to finally image, measure and understand astrophysical black holes. Its PIs, Falcke, Kramer and Rezzolla, test fundamental predictions of Einstein’s theory of General Relativity. The BlackHoleCam team members are active partners of the global Event Horizon Telescope Consortium (ETHC). Goethe University is a stakeholder institute and represented on the Executive board of the EHTC.

List of Authors and affiliations:

Yosuke Mizuno1, Ziri Younsi1, Christian M. Fromm1, , Oliver Porth1, Mariafelicia De Laurentis1, Hector Olivares1, Heino Falcke2, Michael Kramer3 and Luciano Rezzolla1,4

(1) Institute for Theoretical Physics, Goethe University, Frankfurt, Germany; (2) Radboud University, Nijmegen, The Netherlands; (3) Max Planck Institute for Radioastronomy, Bonn, Germany; (4) Institute for Advanced Studies, Frankfurt, Germany

Scientists Contact phone numbers:

Yosuke Mizuno: Mobile: +49 159 02104299, Office: +49 69 79847885
Heino Falcke: Mobile: +49 151 23040365, Office: +31 24 3652020
Michael Kramer: Mobile: +49 160 90747348, Office: +49 228 525278
Luciano Rezzolla: Mobile: +49 170 3022982, Office: +49 69 79847871

Local Contact:

Prof. Dr. Michael Kramer,
Director and Head of Research Department „Fundamental Physics in Radio Astronomy“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-278

Prof. Dr. Eduardo Ros,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-125

Dr. Norbert Junkes,
Press and Public Outreach
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399

Weitere Informationen:

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht Deuteron-like heavy dibaryons -- a step towards finding exotic nuclei
22.10.2019 | Tata Institute of Fundamental Research

nachricht A cavity leads to a strong interaction between light and matter
22.10.2019 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

Science & Research
Overview of more VideoLinks >>>