Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing the Birth of the Universe in an Atom of Hydrogen

06.09.2012
TAU uses radio waves to uncover oldest galaxies yet
Windows to the past, stars can unveil the history of our universe, currently estimated to be 14 billion years old. The farther away the star, the older it is — and the oldest stars are the most difficult to detect. Current telescopes can only see galaxies about 700 million years old, and only when the galaxy is unusually large or as the result of a big event like a stellar explosion.

Now, an international team of scientists led by researchers at Tel Aviv University have developed a method for detecting galaxies of stars that formed when the universe was in its infancy, during the first 180 million years of its existence. The method is able to observe stars that were previously believed too old to find, says Prof. Rennan Barkana of TAU's School of Physics and Astronomy.

Published in the journal Nature, the researchers' method uses radio telescopes to seek out radio waves emitted by hydrogen atoms, which were abundant in the early days of the universe. Emitting waves measuring about eight inches (21 centimeters) long, the atoms reflect the radiation of the stars, making their emission detectable by radio telescopes, explains Prof. Barkana. This development opens the way to learning more about the universe's oldest galaxies.

Reading signals from the past

According to Prof. Barkana, these waves show a specific pattern in the sky, a clear signature of the early galaxies, which were one-millionth the size of galaxies today. Differences in the motion of dark matter and gas from the early period of the universe, which affect the formation of stars, produce a specific fluctuation pattern that makes it much easier to distinguish these early waves from bright local radio emissions.

The intensity of waves from this early era depends on the temperature of the gas, allowing researchers to begin to piece together a rough map of the galaxies in an area of the sky. If the gas is very hot, it means that there are many stars there; if cooler, there are fewer stars, explains Prof. Barkana.

These initial steps into the mysterious origins of the universe will allow radio astronomers to reconstruct for the first time what the early universe looked like, specifically in terms of the distribution of stars and galaxies across the sky, he believes.

A new era

This field of astronomical research, now being called "21-centimeter cosmology," is just getting underway. Five different international collaborations are building radio telescopes to detect these types of emissions, currently focusing on the era around 500 million years after the Big Bang. Equipment can also be specifically designed for detecting signals from the earlier eras, says Prof. Barkana. He hopes that this area of research will illuminate the enigmatic period between the birth of the universe and modern times, and allow for the opportunity to test predictions about the early days of the universe.

"We know a lot about the pristine universe, and we know a lot about the universe today. There is an unknown era in between when there was hot gas and the first formation of stars. Now, we are going into this era and into the unknown," says Prof. Barkana. He expects surprises along the way, for example involving the properties of early stars, and that observations will reveal a more complicated cosmological reality than was predicted by their models.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org
http://www.aftau.org/site/News2?page=NewsArticle&id=17151

More articles from Physics and Astronomy:

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

nachricht Physicists edge closer to controlling chemical reactions
11.12.2018 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>