Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Thermal-Imaging Lens From Waste Sulfur

18.04.2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team has found.

The team successfully took thermal images of a person through a piece of the new plastic. By contrast, taking a picture taken through the plastic often used for ordinary lenses does not show a person’s body heat. 

"We have for the first time a polymer material that can be used for quality thermal imaging – and that's a big deal," said senior co-author Jeffrey Pyun, whose lab at the UA developed the plastic. "The industry has wanted this for decades." 

These lenses and their next-generation prototypes could be used for anything involving heat detection and infrared light, such as handheld cameras for home energy audits, night-vision goggles, perimeter surveillance systems and other remote-sensing applications, said senior co-author Robert A. Norwood, a UA professor of optical sciences. 

... more about:
»Sulfur »Technology »Waste »optics »plastic »profile »rubber

The lenses also could be used within detectors that sense gases such as carbon dioxide, he said. Some smart building technology already uses carbon dioxide detectors to adjust heating and cooling levels based on the number of occupants. 

In contrast to the materials currently used in infrared technology, the new plastic is inexpensive, lightweight and can be easily molded into a variety of shapes, said Pyun, associate professor of chemistry and biochemistry at the UA. 

The researchers have filed an international patent for their new chemical process and its application for lenses. Several companies have expressed interest in the technology, he said. 

Norwood and his colleagues in the UA College of Optical Sciences tested the optical properties of the new lens materials and found they are transparent to mid-range infrared and result in lenses with high optical focusing power. 

The team's discovery could provide a new use for the sulfur left over when oil and natural gas are refined into cleaner-burning fuels. Although there are some industrial uses for sulfur, the amount generated from refining fossil fuels far outstrips the current need for the element. 

The international team's research article, "New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers," is published online in the journal Advanced Materials. 

Pyun and Norwood's co-authors are Jared J. Griebel, Dominic H. Moronta, Woo Jin Chung, Adam G. Simmonds, Richard S. Glass, Soha Namnabat, Roland Himmelhuber, Kyung-Jo Kim, John van der Laan and Eustace L. Dereniak of the UA; Eui Tae Kim and Kookheon Charof Seoul National University in Korea; and Ngoc Nguyen and Michael E. Mackay of the University of Delaware. 

Research funding was provided by the American Chemical SocietyPetroleum Research Foundation, the U.S. National Science Foundation, the National Research Foundation of Korea, the Korean Ministry of Education, Science and Technology, the State of Arizona Technology Research Initiative Fund and the U.S. Air Force Office of Scientific Research. 

Norwood said the new plastic is transparent to wavelengths of light in the mid-infrared range of 3 to 5 microns – a range with many uses in the aerospace and defense industries. 

The new lenses also have a high optical, or focusing, power – meaning they do not need to be very thick to focus on nearby objects, making them lightweight. 

Depending on the amount of sulfur in the plastic, the lenses have a refractive index between 1.865 to 1.745. Most other polymers that have been developed have refractive indices below 1.6 and transmit much less light in the mid-range infrared, the authors wrote in their paper. 

Pyun and colleagues reported their creation of the new plastic and its possible use in lithium-sulfur batteries in 2013. The researchers have filed patents for that technology as well and several companies are interested. 

Pyun and first author Griebel, a UA doctoral candidate in chemistry and biochemistry, were trying to transform liquid sulfur into a useful plastic that could be produced easily on an industrial scale.

The chemists dubbed their process "inverse vulcanization" because it requires mostly sulfur with a small amount of an additive. Vulcanization is the chemical process that makes rubber more durable by adding a small amount of sulfur to rubber. 

To make lenses, Griebel poured the liquid concoction into a silicone mold similar to those used for baking cupcakes. 

"You can pop the lenses out of the mold once it's cooled," he said. "Making lenses with this process – it's two materials and heat. Processing couldn't be simpler, really." 

The team's next step is comparing properties of the new plastic with existing plastics and exploring other practical applications such as optical fibers. 

# # #

Links

Jeffrey Pyun
http://www.cbc.arizona.edu/facultyprofile?fid_call=Pyun
Robert A. Norwood
http://www.optics.arizona.edu/research/faculty/profile/robert-norwood
http://fp.optics.arizona.edu/RANorwood

Sources

Jeffrey Pyun
520-626-1834
jpyun@email.arizona.edu
Robert A. Norwood
520-626-0936
rnorwood@optics.arizona.edu

Media Contact

Mari N. Jensen
520-626-9635
mnjensen@email.arizona.edu

Mari N. Jensen | UA News

Further reports about: Sulfur Technology Waste optics plastic profile rubber

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>