Artificial butterfly in flight and filmed

Among the various types of butterflies, swallowtails are unique in that their wing area is very large relative to their body mass. This combined with their overlapping fore wings means that their flapping frequency is comparatively low and their general wing motion severely restricted.

As a result, swallowtails' ability to actively control the aerodynamic force of their wings is limited and their body motion is a passive reaction to the simple flapping motion, and not – as common in other types of butterfly – an active reaction to aerodynamics.

To prove that the swallowtail achieves forward flight with simple flapping motions, the researchers built a lifelike ornithopter in the same dimensions as the butterfly, copying the swallowtail's distinct wing shape and the thin membranes and veins that cover its wings.

Using motion analysis software, the researchers were able to monitor the ornithopter's aerodynamic performance, showing that flight can be realised with simple flapping motions without feedback control, a model which can be applied to future aerodynamic systems.

The article will be available to read from Thursday, 20 May at http://iopscience.iop.org/1748-3190/5/2/026003 and you can watch the video on IOP's YouTube channel here http://www.youtube.com/watch?v=Bcm4s1af56Q

Media Contact

Lena Weber EurekAlert!

More Information:

http://www.iop.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

‘Smart’ contact lenses could someday enable wireless glaucoma detection

Most people with early-stage glaucoma don’t know they have it, even though early treatment is key to reducing vision loss. While detecting a subtle increase in eye pressure helps doctors…

New tech may lead to smaller, more powerful wireless devices

Good vibrations… What if your earbuds could do everything your smartphone can do already, except better? What sounds a bit like science fiction may actually not be so far off….

Caution, hot surface!

An international research team from the University of Jena and the Helmholtz Institute Jena are demystifying the mechanisms by which high-intensity laser pulses produce plasma on the surface of solids….

Partners & Sponsors