Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne cloud computing helps scientists run high energy physics experiments

26.03.2009
A novel system is enabling high energy physicists at CERN in Switzerland, to make production runs that integrate their existing pool of distributed computers with dynamic resources in "science clouds." The work was presented at the 17th annual conference on Computing in High Energy and Nuclear Physics, held in Prague, Czech Republic, March 21-27.

The integration was achieved by leveraging two mechanisms: the Nimbus Context Broker, developed by computer scientists at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago, and a portable software environment developed at CERN.

Scientists working on A Large Ion Collider Experiment, also known as the ALICE collaboration, are conducting heavy ion simulations at CERN. They have been developing and debugging compute jobs on a collection of internationally distributed resources, managed by a scheduler called AliEn.

Since researchers can always use additional resources, the question arose, How can one integrate a cloud's dynamically provisioned resources into an existing infrastructure such as the ALICE pool of computers, and still ensure that the various AliEn services have the same deployment-specific information? Artem Harutyunyan, sponsored by the Google Summer of Code to work on the Nimbus project, made this question the focus of his investigation. The first challenge was to develop a virtual machine that would support ALICE production computations.

"Fortunately, the CernVM project had developed a way to provide virtual machines that can be used as a base supporting the production environment for all four experiments at the Large Hadron Collider at CERN – including ALICE," said Harutyunyan, a graduate student at State Engineering University of Armenia and member of Yerevan Physics Institute ALICE group. "Otherwise, developing an environment for production physics runs would be a complex and demanding task."

The CernVM technology was originally started with the intent of supplying portable development environments that scientists could run on their laptops and desktops. A variety of virtual image formats are now supported, including the Xen images used by the Amazon EC2 as well as Science Clouds. The challenge for Harutyunyan was to find a way to deploy these images so that they would dynamically and securely register with the AliEn scheduler and thus join the ALICE resource pool.

Here the Nimbus Context Broker came into play. The broker allows a user to securely provide context-specific information to a virtual machine deployed on remote resources. It places minimal compatibility requirements on the cloud provider and can orchestrate information exchange across many providers.

"Commercial cloud providers such as EC2 allow users to deploy groups of unconnected virtual machines, whereas scientists typically need a ready-to-use cluster whose nodes share a common configuration and security context. The Nimbus Context Broker bridges that gap," said Kate Keahey, a computer scientist at Argonne and head of the Nimbus project.

Integration of the Nimbus Context Broker with the CernVM technology has proved a success. The new system dynamically deploys a virtual machine on the Nimbus cloud at the University of Chicago, which then joins the ALICE computer pool so that jobs can be scheduled on it. Moreover, with the addition of a queue sensor that deploys and terminates virtual machines based on demand, the researchers can experiment with ways to balance the cost of the additional resources against the need for them as evidenced by jobs in a queue.

According to Keahey, one of the most exciting achievements of the project was the fact that the work was accomplished by integrating cloud computing into the existing mechanisms. "We didn't need to change the users' perception of the system," Keahey said.

For more information on the CERNVM, please visit: http://cernvm.cern.ch

For more information on the Nimbus, please visit: http://workspace.globus.org

The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Eleanor Taylor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>