Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonne cloud computing helps scientists run high energy physics experiments

26.03.2009
A novel system is enabling high energy physicists at CERN in Switzerland, to make production runs that integrate their existing pool of distributed computers with dynamic resources in "science clouds." The work was presented at the 17th annual conference on Computing in High Energy and Nuclear Physics, held in Prague, Czech Republic, March 21-27.

The integration was achieved by leveraging two mechanisms: the Nimbus Context Broker, developed by computer scientists at the U.S. Department of Energy's Argonne National Laboratory and the University of Chicago, and a portable software environment developed at CERN.

Scientists working on A Large Ion Collider Experiment, also known as the ALICE collaboration, are conducting heavy ion simulations at CERN. They have been developing and debugging compute jobs on a collection of internationally distributed resources, managed by a scheduler called AliEn.

Since researchers can always use additional resources, the question arose, How can one integrate a cloud's dynamically provisioned resources into an existing infrastructure such as the ALICE pool of computers, and still ensure that the various AliEn services have the same deployment-specific information? Artem Harutyunyan, sponsored by the Google Summer of Code to work on the Nimbus project, made this question the focus of his investigation. The first challenge was to develop a virtual machine that would support ALICE production computations.

"Fortunately, the CernVM project had developed a way to provide virtual machines that can be used as a base supporting the production environment for all four experiments at the Large Hadron Collider at CERN – including ALICE," said Harutyunyan, a graduate student at State Engineering University of Armenia and member of Yerevan Physics Institute ALICE group. "Otherwise, developing an environment for production physics runs would be a complex and demanding task."

The CernVM technology was originally started with the intent of supplying portable development environments that scientists could run on their laptops and desktops. A variety of virtual image formats are now supported, including the Xen images used by the Amazon EC2 as well as Science Clouds. The challenge for Harutyunyan was to find a way to deploy these images so that they would dynamically and securely register with the AliEn scheduler and thus join the ALICE resource pool.

Here the Nimbus Context Broker came into play. The broker allows a user to securely provide context-specific information to a virtual machine deployed on remote resources. It places minimal compatibility requirements on the cloud provider and can orchestrate information exchange across many providers.

"Commercial cloud providers such as EC2 allow users to deploy groups of unconnected virtual machines, whereas scientists typically need a ready-to-use cluster whose nodes share a common configuration and security context. The Nimbus Context Broker bridges that gap," said Kate Keahey, a computer scientist at Argonne and head of the Nimbus project.

Integration of the Nimbus Context Broker with the CernVM technology has proved a success. The new system dynamically deploys a virtual machine on the Nimbus cloud at the University of Chicago, which then joins the ALICE computer pool so that jobs can be scheduled on it. Moreover, with the addition of a queue sensor that deploys and terminates virtual machines based on demand, the researchers can experiment with ways to balance the cost of the additional resources against the need for them as evidenced by jobs in a queue.

According to Keahey, one of the most exciting achievements of the project was the fact that the work was accomplished by integrating cloud computing into the existing mechanisms. "We didn't need to change the users' perception of the system," Keahey said.

For more information on the CERNVM, please visit: http://cernvm.cern.ch

For more information on the Nimbus, please visit: http://workspace.globus.org

The U.S. Department of Energy's Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Eleanor Taylor | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>