Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acoustic levitation made simple

05.01.2015

Ultrasonic device made by Brazilian team to be featured on the cover of Applied Physics Letters this week

A team of researchers at the University of São Paulo in Brazil has developed a new levitation device that can hover a tiny object with more control than any instrument that has come before.


This shows levitation of expanded polystyrene particles and the simulated standing wave pattern.

Credit: M. Andrade/University of São Paulo

Featured on this week's cover of the journal Applied Physics Letters, from AIP Publishing, the device can levitate polystyrene particles by reflecting sound waves from a source above off a concave reflector below. Changing the orientation of the reflector allow the hovering particle to be moved around.

Other researchers have built similar devices in the past, but they always required a precise setup where the sound source and reflector were at fixed "resonant" distances. This made controlling the levitating objects difficult. The new device shows that it is possible to build a "non-resonant" levitation device -- one that does not require a fixed separation distance between the source and the reflector.

This breakthrough may be an important step toward building larger devices that could be used to handle hazardous materials, chemically-sensitive materials like pharmaceuticals -- or to provide technology for a new generation of high-tech, gee-whiz children's toys.

"Modern factories have hundreds of robots to move parts from one place to another," said Marco Aurélio Brizzotti Andrade, who led the research. "Why not try to do the same without touching the parts to be transported?"

The device Andrade and his colleagues devised was only able to levitate light particles (they tested it polystyrene blobs about 3 mm across). "The next step is to improve the device to levitate heavier materials," he said.

How the Acoustic Levitation Device Works

In recent years, there has been significant progress in the manipulation of small particles by acoustic levitation methods, Andrade said.

In a typical setup, an upper cylinder will emit high-frequency sound waves that, when they hit the bottom, concave part of the device, are reflected back. The reflected waves interact with newly emitted waves, producing what are known as standing waves, which have minimum acoustic pressure points (or nodes), and if the acoustical pressure at these nodes is strong enough, it can counteract the force of gravity and allow an object to float.

The first successful acoustical levitators could successfully trap small particles in a fixed position, but new advances in the past year or so have allowed researchers not only to trap but also to transport particles through short distances in space.

These were sorely won victories, however. In every levitation device made to date, the distance between the sound emitter and the reflector had to be carefully calibrated to achieve resonance before any levitation could occur. This meant that the separation distance had to be equal to a multiple of the half-wavelength of the sound waves. If this separation distance were changed even slightly, the standing wave pattern would be destroyed and the levitation would be lost.

The new levitation device does not require such a precise separation before operation. In fact, the distance between the sound emitter and the reflector can be continually changed in mid-flight without affecting the levitation performance at all, Andrade said.

"Just turn the levitator on and it is ready," Andrade said.

###

The article, "Particle manipulation by a non-resonant acoustic levitator" is authored by Marco A. B. Andrade, Nicolás Pérez and Julio C. Adamowski. It appears in the journal Applied Physics Letters on Monday, January 5, 2015 (DOI: 10.1063/1.4905130). After that date, it will be available at: http://scitation.aip.org/content/aip/journal/apl/106/1/10.1063/1.4905130

The authors of this paper are affiliated with the University of São Paulo in Brazil and Universidad de la República in Uruguay.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Jason Socrates Bardi | EurekAlert!

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>