Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Abrupt motion sharpens x-ray pulses


Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray pulses of state-of-the-art x-ray sources in a narrow spectral region. Such x-ray pulses are desired for a number of fundamental physics experiments or are a prerequisite for some precision experiments.

Before motion (top) the light scattered by the target (blue) extinguishes the excitation (red). After the motion (bottom), the scattered light is displaced and the waves enhance each other (magenta).

MPI für Kernphysik

The key roles are played by a piezoelectric transducer which performs precise motions upon electric signals and by a thin iron foil. Precisely synchronized motions redistribute the photons within the x-ray pulse to a narrow wavelength region. “Together with a team from the division of Thomas Pfeifer at the MPIK, the Deutsche Elektronen-Synchrotron (DESY) in Hamburg and the European Synchrotron Radiation Facility (ESRF) in Grenoble, we could demonstrate that the method works.

In fact, the spectrum of x-ray pulses can be manipulated by purely mechanical means”, says Jörg Evers from the division of Christoph Keitel at MPIK and emphasizes the advantages: “Our method doesn’t waste photons like a monochromator that only cuts off the undesired wavelengths. On the other hand, we don’t need to increase the overall energy of the x-ray pulse.”

For their experiments, the physicists used x-ray pulses of the synchrotron facilities ESRF and PETRA III (DESY). The method is based on the Mössbauer effect; therefore, the iron foil is enriched with the isotope 57Fe. In the solid state, this “Mössbauer isotope” may absorb and emit photons without recoil. Thus, the iron foil absorbs an extremely small section of the relatively broad x-ray pulse and “resonantly” emits this light after a certain time delay.

Within this short time span, the piezoelectric transducer moves the iron foil such that the resonant wavelengths are enhanced at the expenses of the “outer” wavelengths due to interference effects. “This displacement by half the resonant wavelength must be controlled to less than a tenth of a nanometer and take place within a few nanoseconds”, explains first author Kilian Heeg, PostDoc in the group of Jörg Evers, the requirements.

In the future, the new method could be advanced for deployment in the routine operation of x-ray sources like synchrotrons or free-electron lasers. The increased intensity results in shorter measurement times and enables measurements with presently low signal rates. Further, the higher signal rates translate into better energy, temporal and spatial resolution. On the other hand, the technique opens the possibility to track motions on atomic scales.

Original publication:
Spectral narrowing of x-ray pulses for precision spectroscopy with nuclear resonances K. P. Heeg, A. Kaldun, C. Strohm, P. Reiser, C. Ott, R. Subramanian, D. Lentrodt, J. Haber, H.-C. Wille, S. Goerttler, R. Rüffer, C. H. Keitel, R. Röhlsberger, T. Pfeifer, J. Evers
Science 357, 375-378 (2017) doi: 10.1126/science.aan3512


PD Dr. Jörg Evers
Division Keitel, MPI für Kernphysik
Tel.: +49 6221-516-177
E-Mail: joerg.evers(at)

Prof. Dr. Thomas Pfeifer
MPI für Kernphysik
Tel.: +49 6221-516-380
E-Mail: thomas.pfeifer(at)

Prof. Dr. Ralf Röhlsberger
Deutsches Elektronen-Synchrotron DESY
Tel: +49 40 8998 4503
email: ralf.roehlsberger(at)

Weitere Informationen: -Group Evers (MPIK, Division Keitel) - Division Pfeifer (MPIK) - Group Röhlsberger (DESY)

Dr. Gertrud Hönes | Max-Planck-Institut für Kernphysik

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>