Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quantum walk of photons

24.05.2017

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer. Therefore, it is expected to work out problems in the not too far future which are virtually impossible to solve by classical supercomputers. Physicists refer to this as "quantum computational supremacy".


An electron microscope image of a so-called micropillar with an integrated quantum dot that is capable of emitting single photons.

Photo: Chair for Applied Physics, University of Würzburg

But the supremacy of quantum computers has yet to be proved: Using quantum mechanical effects for calculations is difficult, so previous prototypes were only able to solve very simple problems. Researchers from the University of Würzburg and from the Chinese University for Science and Technology in Hefei and Shanghai are prepared to change this. They just published their studies in the journals Nature Photonics and Physical Review Letters.

The scientists built a special variant of a quantum computer that is dedicated to a single task. "So we don't have a real universal quantum computer, but rather its little brother that is capable of solving one special problem only," Professor Sven Höfling from the University of Würzburg's Chair for Applied Physics explains.

For years, Höfling and his colleagues Christian Schneider and Martin Kamp have worked on developing and improving a central element of this computer: a so-called single-photon source. This source generates individual light particles (photons) at the push of a button. In contrast, for a light bulb or a laser, it is impossible to predict exactly how many photons will be emitted at any given time.

Basis of numerous quantum optics experiments

The Würzburg light source has yet another advantage: The emitted light particles look identical: They have exactly the same colour and propagate in the same direction. "Single photons as these are a basic requirement for many quantum optics experiments," Höfling emphasises. "We have optimised our methods during years of work so that we are now able to generate such light particles very efficiently and reliably." Expressed in figures this means that when the scientists push the button 100 times, their light source will produce a single photon up to 74 times. Only once does the method erroneously deliver two photons at the same time.

The partners from Hefei and Shanghai sent the photons out on a kind of optical orientation run: They made the light particles pass through a material where they came upon a fork in the road, figuratively speaking, at regular intervals. Then each time they had to choose either the left or the right path.

Their situation is similar to that of a man who tosses a coin several times in a row. He takes a step to the right each time the coin shows heads. If it comes up tail, he will walk a step to the left. After flipping the coin ten times, the man has probably not gotten very far from where he started since a coin has a 50/50 probability of landing tail or head. In order to go ten steps to the right, he would have to land heads up ten times in a row. And this is rather unlikely.

A quantum walk with five participants

If this experiment was conducted 1,000 times in a row and the man's position was recorded after each toss, we would obtain a typical bell-shaped curve: The journey frequently ends somewhere near the starting point. In contrast, the man is only rarely located far on the left or right.

The experiment is called "random walk". We encounter this phenomenon in many areas of nature for example as the Brownian motion. Its analogy in quantum physics is the so-called "random quantum walk". However, the outcome of this quantum walk is much more difficult to predict because of the quantum interference of undistinguishable particles, especially so when multiple particles set off at the same time. "Already from about 20 photons, classical computers reach their limits," Höfling explains. "Our partners from China therefore use the single photons in connection with a photonic circuit for a quantum simulation which emulates the problem."

In the recent publications, they dispatched up to five photons simultaneously. To determine the distribution, they needed about as much time using their method as it would have taken the very first electronic computers to do. "But we are optimistic that our approach will enable us to run simulations with 20 or more photons," Sven Höfling says hopefully. "This would take us to a level where quantum technology could prove its supremacy over standard computers for the first time and we are working on this."

Hui Wang et al.: High-efficiency multiphoton boson sampling; Nature Photonics; DOI: 10.1038/nphoton.2017.63.

Yu He u.a.:Time-Bin-Encoded Boson Sampling with a Single-Photon Device; Phys. Rev. Lett. 118, 190501 (2017)

Contact:

Prof. Dr. Sven Höfling, Chair for Applied Physics of the University of Würzburg, T: +49 931 31-83613, e-mail: sven.hoefling@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Supercomputers without waste heat
07.12.2018 | Universität Konstanz

nachricht DF-PGT, now possible through massive sequencing techniques
06.12.2018 | Universitat Autonoma de Barcelona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>