Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new knob to control and create higher harmonics in solids

29.09.2017

Scientists at the MPSD and CFEL have demonstrated the possibility of using a new knob to control and optimize the generation of high-order harmonics in bulk materials, one of the most important physical processes for generating high-energy photons and for the ultrafast manipulation of information.

The generation of high-order harmonics in gases is nowadays routinely used in many different areas of sciences, ranging from physics, to chemistry and biology. This strong-field phenomenon consists in converting many low-energy photons coming from a very strong laser, to fewer photons with a higher energy. Despite the growing interest in this phenomenon in solids, the mechanism behind the conversion of light is still under debate for solid materials.


When exciting crystals such as silicon by an intense elliptically or circularly polarized light pulse (red), circularly polarized higher harmonics (green & blue) can be generated.

Nicolas Tancogne-Dejean + Joerg M. Harms, MPSD

Scientists from the MPSD (Max Planck Institute for the Structure and Dynamics of Matter) and CFEL* (Center for Free-Electron Laser Science) in Hamburg used state-of-the-art theoretical simulation tools to advance the fundamental understanding of this phenomenon in solids. Their work is published in Nature Communications.

When atoms and molecules interact with strong laser pulses, they emit high-order harmonics of the fundamental driving laser field. The high-harmonic generation (HHG) in gases is regularly used nowadays to produce isolated attosecond pulses and coherent radiation ranging from visible to soft x-rays. Because of a higher electronic density, solids are one promising route towards compact, brighter HHG sources. However, their use is currently hampered by the lack of a microscopic understanding of the mechanism leading to HHG from solids.

Researchers at the MPSD and CFEL have now shown that, by using elliptically polarized driving light, it is possible to unravel the complex interplay between the two mechanisms responsible for HHG in solids. By means of extensive first-principles simulations they have shown how these two mechanisms are strongly and differently affected by the ellipticity of the driving laser field.

The complex interplay between these effects can be used to tune and improve harmonic emission in solids. In particular, they have shown that the maximal obtained photon energy can be increased by as much as 30% using a finite ellipticity of the driving laser field.

They also demonstrated the possibility of generating circularly polarized harmonics with alternating helicity from a single circularly polarized driving field, thus opening a new avenue for a better understanding and control of HHG in solids based on ellipticity, with intriguing new opportunities in the spectroscopy of magnetic materials. Their work shows that ellipticity provides an additional knob to experimentally control high-order harmonic generation in solids.

*CFEL is a scientific collaboration of DESY, Max-Planck-Gesellschaft and Universität Hamburg

Original publication:
Ellipticity dependence of high-harmonic generation in solids: unraveling the interplay between intraband and interband dynamics
N. Tancogne-Dejean, O.D. Mücke, F.X. Kärtner, A. Rubio
Nature Communications, s41467-017-00764-5 (2017)

For further information please contact Jenny Witt, Presse- und Öffentlichkeitsarbeit MPSD, +49 40 8998 6593 / jenny.witt@mpsd.mpg.de

Weitere Informationen:

http://dx.doi.org/10.1038/s41467-017-00764-5 Original publication

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie
Further information:
http://www.mpsd.mpg.de

More articles from Physics and Astronomy:

nachricht Supercomputers without waste heat
07.12.2018 | Universität Konstanz

nachricht DF-PGT, now possible through massive sequencing techniques
06.12.2018 | Universitat Autonoma de Barcelona

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>