Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new knob to control and create higher harmonics in solids

29.09.2017

Scientists at the MPSD and CFEL have demonstrated the possibility of using a new knob to control and optimize the generation of high-order harmonics in bulk materials, one of the most important physical processes for generating high-energy photons and for the ultrafast manipulation of information.

The generation of high-order harmonics in gases is nowadays routinely used in many different areas of sciences, ranging from physics, to chemistry and biology. This strong-field phenomenon consists in converting many low-energy photons coming from a very strong laser, to fewer photons with a higher energy. Despite the growing interest in this phenomenon in solids, the mechanism behind the conversion of light is still under debate for solid materials.


When exciting crystals such as silicon by an intense elliptically or circularly polarized light pulse (red), circularly polarized higher harmonics (green & blue) can be generated.

Nicolas Tancogne-Dejean + Joerg M. Harms, MPSD

Scientists from the MPSD (Max Planck Institute for the Structure and Dynamics of Matter) and CFEL* (Center for Free-Electron Laser Science) in Hamburg used state-of-the-art theoretical simulation tools to advance the fundamental understanding of this phenomenon in solids. Their work is published in Nature Communications.

When atoms and molecules interact with strong laser pulses, they emit high-order harmonics of the fundamental driving laser field. The high-harmonic generation (HHG) in gases is regularly used nowadays to produce isolated attosecond pulses and coherent radiation ranging from visible to soft x-rays. Because of a higher electronic density, solids are one promising route towards compact, brighter HHG sources. However, their use is currently hampered by the lack of a microscopic understanding of the mechanism leading to HHG from solids.

Researchers at the MPSD and CFEL have now shown that, by using elliptically polarized driving light, it is possible to unravel the complex interplay between the two mechanisms responsible for HHG in solids. By means of extensive first-principles simulations they have shown how these two mechanisms are strongly and differently affected by the ellipticity of the driving laser field.

The complex interplay between these effects can be used to tune and improve harmonic emission in solids. In particular, they have shown that the maximal obtained photon energy can be increased by as much as 30% using a finite ellipticity of the driving laser field.

They also demonstrated the possibility of generating circularly polarized harmonics with alternating helicity from a single circularly polarized driving field, thus opening a new avenue for a better understanding and control of HHG in solids based on ellipticity, with intriguing new opportunities in the spectroscopy of magnetic materials. Their work shows that ellipticity provides an additional knob to experimentally control high-order harmonic generation in solids.

*CFEL is a scientific collaboration of DESY, Max-Planck-Gesellschaft and Universität Hamburg

Original publication:
Ellipticity dependence of high-harmonic generation in solids: unraveling the interplay between intraband and interband dynamics
N. Tancogne-Dejean, O.D. Mücke, F.X. Kärtner, A. Rubio
Nature Communications, s41467-017-00764-5 (2017)

For further information please contact Jenny Witt, Presse- und Öffentlichkeitsarbeit MPSD, +49 40 8998 6593 / jenny.witt@mpsd.mpg.de

Weitere Informationen:

http://dx.doi.org/10.1038/s41467-017-00764-5 Original publication

Jenny Witt | Max-Planck-Institut für Struktur und Dynamik der Materie
Further information:
http://www.mpsd.mpg.de

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>