Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zika virus study reveals possible causes of brain pathology

04.09.2018

In healthy individuals, the Zika virus causes flu-like symptoms. If a pregnant woman becomes infected, the unborn child can suffer from severe brain abnormalities as a result of mechanisms that have not yet been explained. A study by the Technical University of Munich (TUM) and the Max Planck Institute of Biochemistry (MPI-B) shows that Zika virus proteins bind to cellular proteins that are required for neural development.

A few years ago, Zika virus spread across South America, posing a health issue with global impact. A significant number of South American women who came into contact with the virus for the first time at the start of their pregnancy by a mosquito bite subsequently gave birth to children with severe disabilities. The babies suffered from a condition known as microcephaly; they were born with a brain that was too small. This can lead to intellectual disabilities and other serious neurological disorders.


The scientific team of the Zika virus study (from left to right): Pietro Scaturro, Prof. Andreas Pichlmair and Dr. Alexey Stukalov.

Astrid Eckert / Technical University of Munich

Scientists succeeded in proving that these deformities are caused by Zika virus infections, but so far they have been unable to explain why. Andreas Pichlmair, Chair for Viral Immunopathology at TUM, and his team from the TUM Institute of Virology and MPI-B have examined how Zika virus influences human brain cells. They identified the virus proteins with the potential to affect neuronal development in the developing brain.

Dangerous side-effect of virus replication

“Zika virus is closely related to the Hepatitis C virus and certain tropical diseases such as Dengue and West Nile virus. It is, however, the only virus that causes brain damage in newborns,” explains Pichlmair, who headed the recent study published in the science journal “Nature”.

The researchers discovered that the virus uses certain cellular proteins to replicate its own genome. These molecules are also important neurological factors in the process of a stem cell developing into a nerve cell. “Our findings suggest that the virus takes these factors away from brain development and uses them to replicate its genome, which prevents the brain from developing properly,” explains the virologist.

When the team headed by Pichlmair removed the factors in the cells, the virus found it much harder to replicate. The researchers were able to demonstrate which virus proteins come in contact with these development factors and cause the brain defects. “Previous studies revealed the virus proteins necessary for the packaging or replication of the viral genome but it was enigmatic to understand how these proteins influence neuronal development. It appears that viral proteins are responsible for causing the serious defects in the unborn – unintentionally we presume,” says Pichlmair.

Clear picture of the virus infection

In their comprehensive proteomics survey, the research team identified cellular proteins that were altered chemically or numerically by the virus or which bound to virus proteins. In this way, they were not only able to illustrate possible reasons for the caused deformities, but also obtained a very clear picture of how the virus reprograms the cell to use it for its own replication.

The influence of Zika virus on the cell was found to be dramatic: Nine percent of all cellular proteins were chemically altered, and virus proteins interacted with more than 380 cellular proteins. “Our comprehensive dataset will hopefully lead the way for other scientists to develop therapeutic approaches for the elimination of Zika or related viruses,” says Pichlmair.

More information:
The study was funded by the European Research Council (ERC) and carried out at the German Center for Infection Research amongst others. Andreas Pichlmair holds a DZIF professorship.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Pichlmair
Technical University of Munich
Institute of Virology
Phone: +49 89 4140-9270
andreas.pichlmair@tum.de

www.tum.de

Originalpublikation:

Pietro Scaturro, Alexey Stukalov, Darya A. Haas, Mirko Cortese, Kalina Draganova, Anna Płaszczyca, Ralf Bartenschlager, Magdalena Götz and Andreas Pichlmair: An Orthogonal Proteomic Survey uncovers novel Zika virus Host Factors, Nature, September 2018, DOI: 10.1038/s41586-018-0484-5.
https://www.nature.com/articles/s41586-018-0484-5

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34920/ - This text on web
https://mediatum.ub.tum.de/1452568 - High-resolution images
https://www.virologie.med.tum.de/en/home/ - Institute of Virology at TUM
http://www.professoren.tum.de/en/pichlmair-andreas/ - Profile of Prof. Andreas Pichlmair
https://innatelab.virologie.med.tum.de/ - Website of the Research Group of Andreas Pichlmair

Dr. Ulrich Marsch | Technische Universität München

Further reports about: TUM Virology Zika virus cellular proteins neurological virus proteins

More articles from Health and Medicine:

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

nachricht Loss of identity in immune cells explained
18.02.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>