Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zika virus study reveals possible causes of brain pathology

04.09.2018

In healthy individuals, the Zika virus causes flu-like symptoms. If a pregnant woman becomes infected, the unborn child can suffer from severe brain abnormalities as a result of mechanisms that have not yet been explained. A study by the Technical University of Munich (TUM) and the Max Planck Institute of Biochemistry (MPI-B) shows that Zika virus proteins bind to cellular proteins that are required for neural development.

A few years ago, Zika virus spread across South America, posing a health issue with global impact. A significant number of South American women who came into contact with the virus for the first time at the start of their pregnancy by a mosquito bite subsequently gave birth to children with severe disabilities. The babies suffered from a condition known as microcephaly; they were born with a brain that was too small. This can lead to intellectual disabilities and other serious neurological disorders.


The scientific team of the Zika virus study (from left to right): Pietro Scaturro, Prof. Andreas Pichlmair and Dr. Alexey Stukalov.

Astrid Eckert / Technical University of Munich

Scientists succeeded in proving that these deformities are caused by Zika virus infections, but so far they have been unable to explain why. Andreas Pichlmair, Chair for Viral Immunopathology at TUM, and his team from the TUM Institute of Virology and MPI-B have examined how Zika virus influences human brain cells. They identified the virus proteins with the potential to affect neuronal development in the developing brain.

Dangerous side-effect of virus replication

“Zika virus is closely related to the Hepatitis C virus and certain tropical diseases such as Dengue and West Nile virus. It is, however, the only virus that causes brain damage in newborns,” explains Pichlmair, who headed the recent study published in the science journal “Nature”.

The researchers discovered that the virus uses certain cellular proteins to replicate its own genome. These molecules are also important neurological factors in the process of a stem cell developing into a nerve cell. “Our findings suggest that the virus takes these factors away from brain development and uses them to replicate its genome, which prevents the brain from developing properly,” explains the virologist.

When the team headed by Pichlmair removed the factors in the cells, the virus found it much harder to replicate. The researchers were able to demonstrate which virus proteins come in contact with these development factors and cause the brain defects. “Previous studies revealed the virus proteins necessary for the packaging or replication of the viral genome but it was enigmatic to understand how these proteins influence neuronal development. It appears that viral proteins are responsible for causing the serious defects in the unborn – unintentionally we presume,” says Pichlmair.

Clear picture of the virus infection

In their comprehensive proteomics survey, the research team identified cellular proteins that were altered chemically or numerically by the virus or which bound to virus proteins. In this way, they were not only able to illustrate possible reasons for the caused deformities, but also obtained a very clear picture of how the virus reprograms the cell to use it for its own replication.

The influence of Zika virus on the cell was found to be dramatic: Nine percent of all cellular proteins were chemically altered, and virus proteins interacted with more than 380 cellular proteins. “Our comprehensive dataset will hopefully lead the way for other scientists to develop therapeutic approaches for the elimination of Zika or related viruses,” says Pichlmair.

More information:
The study was funded by the European Research Council (ERC) and carried out at the German Center for Infection Research amongst others. Andreas Pichlmair holds a DZIF professorship.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Andreas Pichlmair
Technical University of Munich
Institute of Virology
Phone: +49 89 4140-9270
andreas.pichlmair@tum.de

www.tum.de

Originalpublikation:

Pietro Scaturro, Alexey Stukalov, Darya A. Haas, Mirko Cortese, Kalina Draganova, Anna Płaszczyca, Ralf Bartenschlager, Magdalena Götz and Andreas Pichlmair: An Orthogonal Proteomic Survey uncovers novel Zika virus Host Factors, Nature, September 2018, DOI: 10.1038/s41586-018-0484-5.
https://www.nature.com/articles/s41586-018-0484-5

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/detail/article/34920/ - This text on web
https://mediatum.ub.tum.de/1452568 - High-resolution images
https://www.virologie.med.tum.de/en/home/ - Institute of Virology at TUM
http://www.professoren.tum.de/en/pichlmair-andreas/ - Profile of Prof. Andreas Pichlmair
https://innatelab.virologie.med.tum.de/ - Website of the Research Group of Andreas Pichlmair

Dr. Ulrich Marsch | Technische Universität München

Further reports about: TUM Virology Zika virus cellular proteins neurological virus proteins

More articles from Health and Medicine:

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Lab grown ‘brains’ successfully model disease
13.03.2019 | Max-Planck-Institut für Psychiatrie

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

How heavy elements come about in the universe

18.03.2019 | Physics and Astronomy

Robot arms with the flexibility of an elephant’s trunk

18.03.2019 | Power and Electrical Engineering

Microbes can grow on nitric oxide (NO)

18.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>