Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of California Scientists Create Malaria-Blocking Mosquitoes

30.11.2015

New insect model may help eradicate disease that sickens millions annually

Using a groundbreaking gene editing technique, University of California scientists have created a strain of mosquitoes capable of rapidly introducing malaria-blocking genes into a mosquito population through its progeny, ultimately eliminating the insects’ ability to transmit the disease to humans.


Jim Gathany / CDC

An Anopheles stephensi mosquito obtains a blood meal from a human host through its pointed proboscis. A known malarial vector, the species can found from Egypt all the way to China.

This new model represents a notable advance in the effort to establish an antimalarial mosquito population, which with further development could help eradicate a disease that sickens millions worldwide each year.

To create this breed, researchers at the Irvine and San Diego campuses inserted a DNA element into the germ line of Anopheles stephensi mosquitoes that resulted in the gene preventing malaria transmission being passed on to an astonishing 99.5 percent of offspring. A. stephensi is a leading malaria vector in Asia.

... more about:
»DNA »UCI »ability »genes »malaria »mosquitoes

The study underlines the growing utility of the Crispr method, a powerful gene editing tool that allows access to a cell’s nucleus to snip DNA to either replace mutated genes or insert new ones. Results appear this week in the early online edition of Proceedings of the National Academy of Sciences.

“This opens up the real promise that this technique can be adapted for eliminating malaria,” said Anthony James, Distinguished Professor of molecular biology & biochemistry and microbiology & molecular genetics at UCI.

For nearly 20 years, the James lab has focused on engineering anti-disease mosquitoes. His anti-dengue fever models have been tested in cage trials in Mexico, and in 2012, he helped show that antibodies that impair the parasite’s biology adapted from the immune systems of mice can be introduced into mosquitoes. This trait, though, could only be inherited by about half of the progeny.

Earlier this year, UC San Diego biologists Ethan Bier and Valentino Gantz working with fruit flies announced the development of a new method for generating mutations in both copies of a gene. This mutagenic chain reaction involved using the Crispr-associated Cas9 nuclease enzyme and allowed for transmission of mutations through the germ line with an inheritance rate of 95 percent.

The two groups collaborated to fuse Bier and Gantz’s method with James’ mosquitoes. Gantz packaged antimalaria genes with a Cas9 enzyme (which can cut DNA) and a guide RNA to create a genetic “cassette” that, when injected into a mosquito embryo, targeted a highly specific spot on the germ line DNA to insert the antimalaria antibody genes.

To ensure that the element carrying the malaria-blocking antibodies had reached the desired DNA site, the researchers included in the cassette a protein that gave the progeny red fluorescence in the eyes. Almost 100 percent of offspring – 99.5 percent, to be exact – exhibited this trait, which James said is an amazing result for such a system that can change inheritable traits.

He added that further testing will be needed to confirm the efficacy of the antibodies and that this could eventually lead to field studies. “This is a significant first step,” said James, a National Academy of Sciences member. “We know the gene works. The mosquitoes we created are not the final brand, but we know this technology allows us to efficiently create large populations.”

Bier, a professor of biology at UC San Diego, also noted that “the ability of this system to carry large genetic payloads should have broad applications to the future use of related Crispr-based ‘active genetic’ systems.”

Malaria is one of the world’s leading health problems. More than 40 percent of the world’s population live in areas where there is a risk of contracting the disease. According to the Centers for Disease Control & Prevention, 300 million to 500 million cases of malaria occur each year, and nearly 1 million people die of the disease annually – largely infants, young children and pregnant women, most of them in Africa.

Nijole Jasinskiene, Olga Tatarenkova, Aniko Fazekas and Vanessa Macias of UCI contributed to the study, which was supported by grants from the National Institutes of Health (AI070654, NS029870, AI29746 and AI116433) and the W.M. Keck Foundation and a gift from Drs. Sarah Sandell and Michael Marshall (to Bier).

About the University of California, Irvine: Currently celebrating its 50th anniversary, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. It’s located in one of the world’s safest and most economically vibrant communities and is Orange County’s second-largest employer, contributing $4.8 billion annually to the local economy. For more on UCI, visit www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UC Irvine faculty and experts, subject to availability and university approval. For more UC Irvine news, visit news.uci.edu. Additional resources for journalists may be found at www.communications.uci.edu/for-journalists.

Contact Information
Tom Vasich
Director of Research Communications
tmvasich@uci.edu
Phone: 949-824-6455

http://www.uci.edu

Tom Vasich | EurekAlert!

Further reports about: DNA UCI ability genes malaria mosquitoes

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>