Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC, Vanderbilt discover a new live vaccine approach for SARS and novel coronaviruses

13.11.2012
Rapid mutation has long been considered a key to viral adaptation to environmental change.

But in the case of the coronavirus responsible for deadly severe acute respiratory syndrome (SARS), collaborating researchers at the University of North Carolina and Vanderbilt University have found that accelerating the rate of mutations cripples the virus's ability to cause disease in animals. In addition, they say this finding may allow scientists to explore a new option for creating safer live vaccines.

A collaborative study, published Nov. 11 in Nature Medicine, demonstrates a SARS-coronavirus, altered to lack the ability to "proofread" (correct mistakes in replication), begins to mutate much more rapidly and becomes unable to cause disease in mouse models. In effect, the alteration creates a profoundly weakened or attenuated SARS virus.

This work may offer reassurance at a critical time. Public attention was recently heightened regarding a novel human coronavirus that sickened at least two with respiratory and kidney disease, killing one in the Middle East. The SARS outbreak in 2002 and 2003 caused 50 percent mortality in older adults. A rapid and effective international response ended the outbreak in just four months. The final tally: 8,422 cases of SARS, resulting in 916 deaths.

"We originally thought that the virus might find a way to fix the mutations we engineered or work around them as viruses often do. That didn't happen, and in this case, the attenuated viruses replicated well enough and long enough to generate a protective immune response, even in immunocompromised animals, so it works wonderfully as a vaccine in an animal model," said Rachel Graham, Ph.D., a research associate at UNC, who led the research.

The study is the culmination of more than a decade of collaboration between the laboratories of Mark Denison, M.D., Craig-Weaver Professor of Pediatrics and professor of Pathology, Microbiology & Immunology at Vanderbilt University School of Medicine, and Ralph Baric, Ph.D., professor of Microbiology, Immunology and Epidemiology at the University of North Carolina at Chapel Hill's Gillings School of Global Public Health. The researchers' aim is to better understand how coronaviruses, which also cause the common cold, evolve and spread between species.

Denison's lab developed the attenuated SARS virus by disabling a unique exoribonuclease (or ExoN) protein, referred to as a proofreading protein. Previous Vanderbilt studies had shown that disabling ExoN knocks out the virus's ability to correct mistakes, increases mutations twentyfold, and stops its ability to cause disease, at least in the lab setting. Graham, formerly a graduate student in Denison's lab, was able to continue the work in animal models as a postdoctoral scientist in Baric's lab.

Coronaviruses are RNA viruses known to have the largest genomes in the RNA viral world. It is now understood that the ExoN proofreading protein allows coronaviruses to maintain their expanded genomes, with many proteins evolved to help them survive and spread. But deactivation of ExoN creates a particularly enticing potential approach to vaccine design.

"Live vaccines in general confer broader and longer-lasting immunity, but the risk of live vaccines is they could potentially revert back to virulence as happened with the live polio vaccine in immunocompromised people," Baric said. "Our evidence is exciting because a more permanently attenuated virus might be safer. We believe that related approaches can be applied to other important human and animal viruses, resulting in safer vaccines."

To test the likelihood of reversion to virulence, researchers allow a virus to grow in a host that lacks immunity. In the current study, even in very young, very old and immunocompromised animals, the virus did not kill and could persist for a long time without showing signs of a return to virulence.

"In contrast to science fiction, where mutations are evil and endanger the world, our studies demonstrate that viruses have evolved to tightly control their mutation rates, and changing that rate is detrimental to virus survival and disease in nature," Denison said. "Since all coronaviruses have the ExoN protein, this method for attenuation could be broadly applicable in coronaviruses."

"If we can't have a vaccine ready to administer that works for all coronaviruses, then we at least have a strategy for fast production of a functional vaccine for any new epidemic coronavirus that might arise. That's a key take-away point of our paper and what makes it so important in the face of current events," Graham said.

Carole Bartoo | Vanderbilt University Medical Ce
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>