Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM School of Medicine scientists find new malaria vaccine is safe and protective in children

04.02.2010
Global partnership enabled testing in Mali, West Africa, where malaria threat is high

A new vaccine to prevent the deadly malaria infection has shown promise to protect the most vulnerable patients — young children — against the disease, according to an international team of researchers led by the University of Maryland School of Medicine's Center for Vaccine Development (CVD) and the Malaria Research and Training Center at the University of Bamako in Mali, West Africa.

In a new study of the vaccine in young children in Mali, researchers found it stimulated strong and long-lasting immune responses. In fact, the antibody levels the vaccine produced in the children were as high or even higher than the antibody levels found in adults who have naturally developed protective immune responses to the parasite over lifelong exposure to malaria.

"These findings imply that we may have achieved our goal of using a vaccine to reproduce the natural protective immunity that normally takes years of intense exposure to malaria to develop," says Christopher V. Plowe, M.D., M.P.H., professor and chief of the Malaria Section of the CVD. Dr. Plowe, a lead author of the study to be published online in the Feb. 4 issue of PLoS ONE, the journal of the Public Library of Science, also is an investigator with the Howard Hughes Medical Institute and a Doris Duke Distinguished Clinical Scientist.

In areas of the world such as Africa, where malaria is particularly rampant, the young are most vulnerable to the disease since they have not built up the same natural immunity as adults. A child dies of malaria every 30 seconds, according to the World Health Organization. There are about 300 million malaria cases worldwide each year, resulting in more than one million deaths, most of them African children.

Malaria is caused by a parasite spread to humans through mosquito bites. There is no approved vaccine to protect against the condition, though using bed nets or killing mosquitoes with insecticides can prevent infection. The parasite is treatable using medications, though drug resistance is a relatively common problem. Eradicating the disease has become a priority for scientists and health officials worldwide. An effective and broadly protective vaccine is a key step toward that goal.

In addition to the Howard Hughes Medical Institute's support of Dr. Plowe's research, the study was sponsored by the U.S. Army and funded by the National Institute of Allergy and Infectious Disease (NIAID), part of the National Institutes of Health, and the United States Agency for International Development (USAID).

The new vaccine, called FMP2.1/AS02A, was developed as part of a longstanding research collaboration between the Walter Reed Army Institute of Research (WRAIR) GlaxoSmithKline Biologicals (GSK). The vaccine consists of a form of the AMA-1 protein, invented and manufactured by WRAIR, and the AS02 Adjuvant System, developed and manufactured by GSK. The Adjuvant System is a compound that boosts the immune response to the vaccine. Previous studies in the U.S. and in Mali already have found the vaccine to be safe and to produce strong immune responses in adults.

The vaccine, based on a single strain of the falciparum malaria parasite — the most common and deadliest form of the parasite found in Africa — targets malaria in the blood stage. The blood stage is the period after the mosquito bite, when the parasite multiplies in the blood, causing disease and death. Other blood stage vaccines have been tested but none has shown the ability to prevent malaria disease.

For the study, the University of Maryland School of Medicine's CVD team collaborated with a group of Malian researchers from the Malaria Research and Training Center, led by Mahamadou Thera, M.D., Ph.D., and Ogobara Doumbo M.D., Ph.D. The study also included collaborators WRAIR, GSK Biologicals, NIAID and USAID.

The scientists tested the vaccine in 100 Malian children ages 1-6 at the Bandiagara Malaria Project in rural Mali. The children were randomly assigned to receive either one of three escalating doses of the malaria vaccine or a control rabies vaccine. All three doses of the vaccine proved to be safe and well tolerated, and all three doses also showed very strong antibody responses that were sustained for at least a year.

Based on the vaccine's apparent success in this early trial, the same international team of U.S., Malian and European investigators now are subjecting it to further study in a much larger trial of 400 Malian children to evaluate its effectiveness against malaria disease. That study also will examine whether the vaccine — though it is based on a single strain of malaria — can protect against the broad array of malaria parasites that exist. The scientists hope the vaccine could be combined with other vaccines to create a multi-component immunization that is highly protective.

"The University of Maryland employs hundreds of researchers worldwide in 23 countries outside of its home campus in Baltimore," says E. Albert Reece, M.D., Ph.D., M.B.A., dean of the School of Medicine, vice president for medical affairs of the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor. "Dr. Plowe is a world-leading malaria researcher, and this groundbreaking work is representative of the global impact of the Center for Vaccine Development and the rest of the University of Maryland School of Medicine. I hope this study leads to a lifesaving vaccine for the children of Africa."

Karen Buckelew | EurekAlert!
Further information:
http://www.umaryland.edu

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>