Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers find natural antioxidant can protect against cardiovascular disease

18.06.2012
University of Minnesota Medical School researchers have collaborated with the School of Public Health and discovered an enzyme that, when found at high levels and alongside low levels of HDL (good cholesterol), can dramatically reduce the risk of cardiovascular disease.

The enzyme – glutathione peroxidase, or GPx3 – is a natural antioxidant that helps protect organisms from oxidant injury and helps the body naturally repair itself. Researchers have found that patients with high levels of good cholesterol, the GPx3 enzyme does not make a significant difference.

However, those patients with low levels of good cholesterol, the GPx3 enzyme could potentially be a big benefit. The enzyme's link to cardiovascular disease may also help determine cardiovascular risk in patients with low levels of good cholesterol and low levels of the protective GPx3.

The new research, published today by PLoS One, supports the view that natural antioxidants may offer the human body profound benefits.

"In our study, we found that people with high levels of the GPx3 enzyme and low levels of good cholesterol were six times less likely to develop cardiovascular disease than people with low levels of both," said lead author Jordan L. Holtzman, M.D., Ph.D., professor of pharmacology and medicine within the University of Minnesota Medical School. "This GPx3 enzyme gives us a good reason to believe that natural antioxidants like GPx3 are good for heart health."

The combination of low HDL and low GPx3 affects an estimated 50 million people – one in four adults – in the U.S. This condition can lead to fatal heart attacks and strokes. Researchers continue to look for new ways to better predict who is at risk for these diseases and how patients can limit the impact of the disease once it's diagnosed.

"It's important to point out that people should not rush out to their doctors and demand testing for the GPx3 enzyme," said Holtzman. "But in time, we hope that measuring this enzyme will be a common blood test when determining whether a patient is at risk for cardiovascular disease, including heart attacks and strokes."

To arrive at his results, Holtzman and his colleagues studied the three major risk factors for cardiovascular disease: hypertension, smoking and high cholesterol. Data suggests that those with low levels of HDL and GPx3 were six times more likely to die from cardiovascular disease, including heart attack or stroke, than those with low levels of HDL and high levels of GPx3.

The study examined 130 stored samples from the Minnesota Heart Survey from participants who died of cardiovascular disease after 5-12 years of follow-up care. The ages of patients studied ranged from 26-85 years old. Their data was compared to 240 control samples.

"This is an important enzyme for people with low HDL cholesterol," said Holtzman. "We think further research will be important in determining the future role of GPx3 and what drugs may serve to increase its activity in the blood."

The research reported in this publication was supported by the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (RO1-HL23727), the Mayo Chair Endowment, School of Public Health, University of Minnesota (DJ), and grant no. 2005R013 from the Netherlands Heart Foundation, Den Haag, the Netherlands (BB).

About the Medical School:

The University of Minnesota Medical School, with its two campuses in the Twin Cities and Duluth, is a leading educator of the next generation of physicians. Our graduates and the school's 3,800 faculty physicians and scientists advance patient care, discover biomedical research breakthroughs with more than $180 million in sponsored research annually, and enhance health through world-class patient care for the state of Minnesota and beyond. Visit www.med.umn.edu to learn more.

Matt DePoint | EurekAlert!
Further information:
http://www.umn.edu

More articles from Health and Medicine:

nachricht Lung images of twins with asthma add to understanding of the disease
06.12.2019 | University of Western Ontario

nachricht Between Arousal and Inhibition
06.12.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>