Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumor target suggests personalized treatment for melanoma

16.06.2010
Identification of a key player in a signaling pathway involved in the development of melanoma – the deadliest form of skin cancer – may offer hope for new targeted melanoma therapies.

Ann Richmond, Ph.D., and colleagues at Vanderbilt-Ingram Cancer Center report that a signaling molecule, known as IKKâ, is essential for melanoma tumor development in a mouse model of the disease. The results, published June 7 in the Journal of Clinical Investigation, also point to ways of targeting therapies that inhibit IKKâ toward the patients most likely to benefit from them based on their genetic profile.

Melanoma is the deadliest form of skin cancer and incredibly difficult to treat successfully once the tumor has spread beyond the skin.

Prior studies have shown that the NF-êB signaling pathway – centered on the protein NF-êB, which regulates gene expression – is abnormally activated in tumor cells; the pathway is turned "on" constantly, even at times it should be turned "off." This activation often results from abnormal activation of another enzyme in the pathway, IKKâ.

Just how NF-êB contributes to tumor progression has been unclear. And with drugs that inhibit this pathway entering clinical trials, a clearer picture of its function in tumor progression is needed.

To better understand the role of this pathway – in particular, of IKKâ's role – Richmond's lab developed a mouse model that mimics the genetic alterations involved in melanoma development in humans.

Jinming Yang, Ph.D., a staff scientist in Richmond's lab, led the effort to generate these mice, which lack the tumor suppressor INK4a/ARF (commonly lost in melanomas) and have the Ras/Raf pathway activated (which is activated in about 70 percent of melanoma lesions).

The researchers then added the ability to "turn off" IKKâ only in melanocytes, the pigment-producing skin cells in which melanomas initiate, simply by treating the mice with an antibiotic.

Mice with normal IKKâ activity developed "loads and loads of melanoma tumors all over their bodies…on the tail, the ear, and anywhere melanocytes are," said Richmond, an Ingram Professor of Cancer Biology at Vanderbilt University Medical Center and a senior career research scientist with the Department of Veterans Affairs.

But mice in which IKKâ was "turned off" developed no melanoma tumors.

They also found that treating mice with normal IKKâ activity with small molecule inhibitors of the enzyme could inhibit the growth of melanoma lesions.

"This shows for the first time that you have to have IKKâ for Ras-induced melanoma, suggesting that there's a way to specifically target melanoma lesions," she said.

However, the experiments identified an important caveat: blocking IKKâ only seemed to protect against melanoma formation when another tumor suppressor, p53, is expressed.

Since mutations that disrupt p53 are sometimes found in melanomas, this suggests that therapies targeting IKKâ or the NF-êB pathway in general would need to be limited to tumors with normal p53.

Richmond cautions, "With NF-êB inhibitors entering clinical trials at this time, it is imperative that these data be taken into consideration for patient selection or evaluation of response in these trials."

Richmond is collaborating with Vanderbilt-Ingram Cancer Center investigators Mark Kelley, M.D., and Jeffrey Sosman, M.D., to identify, in human tumor samples, which tumors would respond to targeted inhibitors of the Ras/Raf and NF-êB pathways.

Such information could aid in diagnosis and "be used to deliver personalized medicine" to melanoma patients in the future, she said.

"We're passionate about (IKKâ inhibitors) possibly going forward, maybe not as a single agent, but in combination (treatments). As we are able to better predict which patients will respond to which drugs, there's real hope there."

Richmond is also a professor of Medicine in the Division of Dermatology. Other authors on the study include: Ryan Splittgerber, Ph.D., Fiona Yull, D.Phil., Sara Kantrow, Gregory Ayers from Vanderbilt, and Michael Karin, Ph.D., from the University of California San Diego. The research was supported by the Department of Veterans Affairs, the National Institutes of Health, the Skin Disease Research Center and the Vanderbilt-Ingram Cancer Center.

Dagny Stuart | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht New way to target advanced breast cancers
24.09.2018 | Jackson Laboratory

nachricht Neutrons produce first direct 3D maps of water during cell membrane fusion
21.09.2018 | DOE/Oak Ridge National Laboratory

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Matter falling into a black hole at 30 percent of the speed of light

24.09.2018 | Physics and Astronomy

NASA balloon mission captures electric blue clouds

24.09.2018 | Earth Sciences

New way to target advanced breast cancers

24.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>